Analiza B

Pawel Glowacki

1. INDUKCJA MATEMATYCZNA I NIEROWNOSCI

Pojecie! liczby rzeczywistej uwazaé bedziemy za intuicyjnie oczywiste. Tym niem-
niej celowe wydaje sie przypomnienie i ugruntowanie niektérych fundamentalnych
wlasnosci liczb rzeczywistych.

W zbiorze liczb rzeczywistych, ktéry bedziemy oznaczaé przez R, na szczegdlng
uwage zastuguja liczby wymierne, czyli liczby postaci g, gdzie p i q sa liczbami
catkowitymi i ¢ # 0. Bedziemy uzywaé¢ oznaczen N, Z i Q odpowiednio na zbiory
liczb naturalnych, catkowitych i wymiernych.

Geometrycznie wyobrazamy sobie liczby rzeczywiste jako oS liczbowa, ktorej
punktem poczatkowym jest 0. Dlatego R czesto nazywamy prosta rzeczywista.

7 algebraicznego punktu widzenia R stanowi ciafo, bo okreslone sa w nim dwa
dziatania

(z,y) =z +y, (v,y) > x-y,
zwane odpowiednio dodawaniem i mnozeniem, o nastepujacych wlasnosciach. Do-
dawanie jest taczne i przemienne, a elementem neutralnym jest liczba 0. Ponadto,
kazdy element z € R posiada element przeciwny. Mnozenie jest taczne i przemi-
enne, a elementem neutralnym jest jedno$¢. Rézne od zera elementy R posiadaja
element odwrotny. Wreszcie mnozenie jest rozdzielne wzgledem dodawania.

Latwo zauwazy¢, ze wszystkie powyzsze wlasnosci posiadaja takze liczby wy-
mierne. Zatem i Q jest cialem. Nie sg natomiast ciatami ani Z, ani N.

Zbidr liczb rzeczywistych jest liniowo uporzadkowany. Oznacza to, ze istnieje w
nim relacja porzadku <, taka ze dla dowolnych xz,y € R jest z < y lub y < x.

Zbiér liczb wymiernych jest zbiorem przeliczalnym, czyli réwnolicznym ze zbio-
rem liczb naturalnych. Ponadto jest gestym podzbiorem R. Rozumiemy przez to,
ze dla dla kazdych rzeczywistych x < y, istnieje liczba wymierna w, taka ze

T <w<y.

Innymi stowy, kazdy otwarty przedzial prostej rzeczywistej zawiera przynajmniej
jedng liczbe wymierna. Oczywiscie stad natychmiast wynika, ze jest ich w istocie
w kazdym przedziale nieskonczenie wiele.

Ciato liczb rzeczywistych posiada istotna wtasnosé, ktorej nie ma ciato liczb
wymiernych. Ot6z wérod liczb ograniczajacych dany niepusty zbiér £ C R od gory

!Serdecznie dziekuje Pani Agnieszce Kazun za trud wlozony w przepisanie i redakcje znacznej
czedci niniejszego skryptu
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(o ile takie istnieja) jest zawsze liczba najmniejsza. Nazywa sie ja kresem gérnym
zbioru E, a wypowiedziang wtasno$¢ — wlasnoscig kresu lub aksjomatem ciggtosci.
Bedziemy o tym moéwié bardziej szczegdlowo w rozdziale 2.

Przystepujemy obecnie do wlasciwego wyktadu. Najpierw oméwimy zasade in-
dukcji matematycznej. Indukcja matematyczna jest metoda dowodzenia wtasnosci
liczb naturalnych.

Definicja. Niech T'(n) orzeka pewna wlasnosé liczby naturalnej n. Zasada in-
dukcji matematycznej méwi, ze jesli

dng € N: T'(ng),
oraz
Vn>ng: T(n)=T(n+1),
to prawdziwe jest twierdzenie

Vn >ng:  T(n).

Tak wiec dowdd indukcyjny przebiega w dwéch etapach. Pierwszy polega na
sprawdzeniu warunku poczatkowego, drugi nazwiemy krokiem indukcyjnym. Zilus-
trujmy teraz zasade indukcji matematyczne;j.

1.1. Twierdzenie (nieréwno$¢ Bernoulliego). Dla kazego n > 1 i kazdego © > —1
zachodzi nierownosé
(I1+x)" > 1+ nz.

Dowéd. (i) Sprawdzamy warunek poczatkowy dla ng = 1:
1+z)>1+=z.

(ii) Zalézmy, ze nieréwnos¢ (1 + x)™ > 1 + nx jest prawdziwa dla pewnego n > 1.
Chcemy pokazaé, ze wtedy prawdziwa jest réwniez nieréwnosc

(1+z)"" > 1+ (n+ 1)z
Istotnie, mnozac obie strony T'(n) przez nieujemne wyrazenie (14 x), otrzymujemy
(14+2)"" =1 +2)"(1+2) > (1+nx)(l+2z)
=1+(n+Dz+nz®>1+n+ 1)
Tym samym dowdd zostal zakonczony. 0O

Srednia artymetyczng liczb aq, a0, as, .. ., a, € R nazywamy wyrazenie

A:CL1+CL2+6L3+...+CL”;

n

Srednig geometryczna liczb a,as,as, ..., a, > 0 nazywamy wyrazenie

G = Yajasas . .. ay;

§rednig harmoniczng liczb aq, as, as, ..., a, > 0 nazywamy wyrazenie
n

Lyl Ly 4L

ai az as an

H =
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Umoéwmy sie, ze przez
A= A(xy,29,...,2,), G=G(x1,29,...,2,), H=H(x1,29,...,2,)

bedziemy oznacza¢ odpowiednio $redniag arytmetyczna, geometryczng i harmoni-
czng liczb xq, 9, 23, ..., xp.
Nastepujacy lemat wykorzystamy w dowodzie kolejnego twierdzenia.

1.2. Lemat. Niech bedq dane liczby a1, as, . ..,a, > 0 takie, Ze a1 < A < a,,, gdzie
A= Aay,as,...,a,). Wtedy

G(ay,ag,...,a,) < G(A, as,as,...,a,_1, (a1 + a, — A)).

Dowdd. Trzeba udowodnic¢ nieréwnosé
(aras. .. an)% < (Aasas...an—1(a1 + a, — A))%
Podnoszac obie strony do potegi n, a nastepnie dzielac je przez dodatniag liczbe
as0s . . .0,_1, otrzymujemy nieréwnos¢ rownowazna
aran, < A(ay + a, — A),

wiec wystarczy pokazaé, ze

A% — A(ay + ap) + aja, < 0.
W tym celu rozwazmy funkcje kwadratowa

f(z) = 2% — x(ay + a,) + ara,.
Wyréznik réwnania f(z) = 0 wynosi
A = (a; + ap)* — daya, = (a; — a,)?,
zatem
VA = lay — a,| = a, — aq,

bo a; < a,, a stad dostajemy, ze pierwiastkami funkcji f sa liczby a; i a,,. Poniewaz

wykresem funkcji f jest parabola skierowana ramionami do géry i a1 < A < a,
wiec f(A) <0, co konezy dowdd lematu. 0O

1.3. Twierdzenie. Jesli aq,as,as,...,a, > 0, to srednia arytmetyczna tych liczb
jest nie mniejsza od ich $redniej geometrycznej, czyli
a;t+aytaz+...+a
(alagag...an)% <t 2 3 -
n

przy czym rowno$é zachodzi, wtedy 1 tylko wtedy gdy

a; = a9 = a3 = ... = Qp.

Dowé6d. Jesli a; =as = a3z = ... = a,, to oczywiscie zachodzi rownosé¢ Srednich
arymetycznej i geometrycznej tych liczb. Trzeba zatem pokazac, ze jesli co najm-
niej dwie sposréd wszystkich liczb ag, kK = 1,2,...,n, sg rézne, to zachodzi ostra
nierownosé

G(ay,...,an) < Alay, ..., an).
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Zauwazmy, ze jesli ar = 0 dla pewnego k € {1,2,...,n}, to érednia geometryczna
jest réwna zero i oczywiscie jest wtedy istotnie mniejsza od Sredniej arytmetycznej
tych liczb. Wéwczas bowiem Srednia arytmetyczna jest dodatnia, gdyz nie wszystkie
wyrazy ap moga by¢ zerami. Przyjmijmy wiec, ze wszystkie liczby ax sa dadatnie.
Dowodzimy naszej nieréwnosci przez indukcje ze wzgledu na n.

(i) Warunek poczatkowy. Jesli a,b > 0 sa rézne, to /a # v/b wiec

(\/__\/6)2 >07
skad
a+b>2avb,

czyli

@J;

(ii) Krok indukcyjny. Zatézmy, ze nasza teza jest prawdziwa dla kazdych n > 2
liczb dodatnich. Chcemy wywnioskowaé jej prawdziwosé dla dowolnych n + 1 liczb
dodatnich, czyli wzor

_1
(CL16L2 R an+1)n+1 < (al +as+ ... CLn+1)

n—+1
dla ai,as,...,a,11 > 0, gdzie przynajmniej dwie z nich sa rézne. Niech A oz-
nacza Srednig arytmetyczng liczb aq, as, ..., a,1. Zmieniajac ewentualnie numer-

acje, mozemy przyjac, ze a; < A < a,y1. Zdefiniujmy nowy ciag n + 1 liczb w
nastepujacy sposob:
A dla k = 1;
by, = Qg dlal <k <n;
a1+an+1—A dla k = n.
Oczywiscie wtedy
A(by,bg, ... b)) = A
oraz na mocy Lematu 1.2
G(al, ag, . .. ,an+1) < G(bl, bg, Cey bn+1)-
Wystarczy wiec pokazaé, ze G(by, by, ..., byp1) < A. Mamy

1
A=A = —
(blab27 7bn+1) n+ 1(b1 + bQ + + bn+1)
1

:n+1(A+b2+...+bn+1),

czyli

1 1
1— A= b vt bpg1),
( n+1) n+1(2+ + H)

. . +1
a stad (po pomnozeniu obu stron przez ")

1
A: E(b2++bn+1)

Korzystajac z zatozenia indukcyjnego, dostajemy, ze
1

A > (b2b3 ce bn+1)5,
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skad
A" = b A™ > biby .. by,
czyli
A > G(by,ba, ... byye).

Tym samym dowdd zostal zakonczony. 0O

1.4. Twierdzenie (nieréwno$¢ Bernoulliego). Dla liczby wymiernej o > 1 i dowol-
nego x > —1 zachodzi nastepujgca nierownosé

(14+2)*>1+ ax.

Dowéd. Poniewaz dla o = 1 nieréwno$¢ jest oczywiScie spetniona, zalézmy, ze
o= %’, gdzie p > q oraz p,q € N. Nasza nierownosé¢ przyjmuje zatem postaé
a >1+ Bx

q
Bez straty ogdlnosci mozemy przyjac, ze 1 + g:c > 0, bo w przeciwnym wypadku
nieréwno$¢ nie wymaga uzasadnienia. Podnoszac obie strony do potegi z%’ dosta-

jemy nieroéwnos¢

(1+ )

1oz [(142)]

q
ijej wystarczy dowies¢. Rozpatrzmy ciag p dodatnich liczb, z ktérych q jest réwnych
1+ §$, a pozostate p — ¢ to jedynki. Srednia arytmetyczna tych liczb wynosi
¢ (1+2x)+(p—q)-1 _qtprtp—q _plz+1)
p p p
a ich érednia geometryczna

=xz+1,

022y - 2

Oznacza to, ze nasza nieréwnos¢ sprowadza sie do nieréwnosci pomiedzy Srednia
arytmetyczna a geometryczna tych p liczb, co konczy dowdéd. O

1.5. Wniosek. Niech liczby o < 1 < [ bedg wymierne. Wowczas dla dowolnych
x,y > 0 zachodzq nierownosci

(1+z) <14z  (1+9)°>1+4°
Dowdd. Podstawiajac y = 2% i 3 = 1/, tatwo sie przekonujemy, ze nieréwnosci

te s rownowazne. Wystarczy zatem dowies¢ tylko drugiej z nich.
Przyjmijmy najpierw, ze Sy > y°. Wtedy na mocy nieréwnoéci Bernoulliego

(1+y)" >1+8y>1+47
tak jak chcieli$my.
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Jedli natomiast By < y?, to y®~! > [ i stosujac ponownie nieréwnoéé Bernoul-
liego widzimy, ze
1+y)’=y"1+1/y)" >y (1 +5/y)
=y + 08y 2 By’ > 14y
wiec i w tym wypadku wszystko sie zgadza. O

Dodajmy, ze zatozenie o wymiernosci wyktadnika w nieréwnosci Bernoulliego
jest nieistotne. Przekonamy sie o tym w rozdziale 3.
Symbolem Newtona nazywamy wyrazenie

(1) = e

1.6. Twierdzenie (wz6r dwumienny Newtona). Dla dowolnych liczb a,b € R oraz
dowolnego n € N zachodzi réwnosé

oo =3 (D)o

k=0

Dowdéd. Mozemy bez straty ogoélnosci zatozyé, ze b # 0. Dzielagc wzér Newtona
obustronnie przez b" i oznaczajac r = ¥, otrzymujemy

(1+2)" = zn: (Z)a;’f

k=0
i tego wzoru bedziemy dowodzi¢.
Sprawdzenie warunku poczatkowego dla n = 1 nie nastrecza zadnych trudnosci.

Aby wykonaé¢ krok indukcyjny, zatozmy, ze wzér obowiazuje dla pewnego n > 1.
Wtedy

Q+2)"M=0+2)1+2)" = (1+2) Z <Z)xk

k=0

Tym samym zakonczylismy dowod. O
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Zauwazmy mimochodem, ze wzér ten pozwala tatwo uzasadni¢ nieréwnosé¢ Ber-
noulliego o wyktadniku naturalnym dla liczb nieujemnych, a mianowicie

(1—1—1’)"22(Z)xk:1+nx+2(2)xk2 1+ nax,
k=2

k=0

gdyz dla z > 0 oczywiscie > (})z* > 0.
k=2
Dla dowolnej liczby € R okreslamy jej modul (lub warto§é bezwzgledna)

wzorem

| = T dla x > 0;
1 —x dlax <0,

lub réwnowaznie

|x| = max{x, —x}.
Funkcja wartosci bezwglednej spetnia warunek tréojkata

ety <lel+lyl,  zyeR,

przy czym réwnosé zachodzi, wtedy i tylko wtedy gdy zy > 0. Stad natychmiast
wynika nieréwnos¢

‘|$’—|y|‘§!$—y!, z,y € R.

Modut liczby x mozna interpretowaé jako jej odleglo$é od zera na osi liczbowej,
za$ | — y| jako odleglosé = od y. Pamietajac, ze $rodek odcinka [z,y] to punkt

%, mozemy wyrazi¢ wiekszg z liczb x, y wzorem
T+ +
max{z,y} = 7 + L y‘,
2 2
a mniejsza
x x
min{z,y} = ;—y_| ;y|

Czescig calkowityg liczby rzeczywistej x nazywamy najwieksza liczbe catkowita
n taka, ze n < x i oznaczamy ja przez [z].

Definicje te mozna zapisa¢ réwniez w taki sposéb:
(2] = max{n € Z: n < z}.

Zauwazmy, ze jeSli x € [n,n+ 1) dla pewnego n € Z, to [z] = n; w szczegdlnosci,
jesli © € Z, to [x] = x. Zauwazmy réwniez, ze kazda liczbe rzeczywista x mozna
jednoznacznie przedstawi¢ w postaci

r = [z] + m(z),

gdzie m(z) € [0,1).
Niech x € R. Liczbe m(x) = = — [z] nazywamy mantysa liczby .
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Aby oswoié¢ Czytelnika z pojeciem czesci catkowitej liczby, udowodnimy nastepu-
jaca tozsamosc:

[nx] = [x+§], reRneN.

[n(z +m)] = [nx + nm] = [nx] + nm

oraz

nzl[aﬂ—m—ir%} :”Zl([x+§] +m> ::g:)[aﬁl—ﬂ + nm,

wiec po zastapieniu x przez x+m tozsamos¢ zostanie zachowana. Wystarczy zatem
udowodni¢ ja dla 0 <z < 1.
Niech wiec 0 < x < 11iniech [ = [nz]. Wtedy 0 <1 <n-—11i

£§x<l—i__1’
n n
a wobec tego
[$+E]:{O jezeli 0 <k <n-—I
1 jezeli n—1<k<n.

Zatem - ' . - .
Sleei]= X o] =i=ta

tak jak zapowiedzieliSmy.



2. NIESKONCZONE CIAGI LICZBOWE

Ciggiem liczbowym nazywamy funkcje
a: N—R.

Wartosci tej funkcji oznaczamy przez a(n) = a, i nazywamy wyrazami ciagu.
Czesto ciag oznaczamy przez {a,}>>, lub po prostu przez {a,}.
Ciag {a,}5°, nazywamy ograniczonym od goéry, jesli

AIMeR VneN a, <M,
a ograniczonym od dotu, jesli

dneR VneN q,>m.

Ciag {a,}22; nazywa sie ograniczony, jesli jest ograniczony od géry i od dotu,
tzn.

GKeER VYneN |a| < K.

2.1. Przyklad. Pokazemy, ze ciag e, = (1—1—}1)” jest ograniczony od gory. Istotnie,
dla dowolnego n € N mamy

ey S ()5 ()

Ciag {a,}5°, nazywa sie
(i) rosnacy, jesli
VneN a1 > ay,
(ii) Scisle rosnacy, jesli
VneN a,i1 > an,
(iii) malejacy, jesli
VneN a,1 <a,,
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(iv) écidle malejacy, jesli
VneN a1 < ap.
2.3. Przyklad. Pokazemy, ze ciag e, = (1 + %)” jest SciSle rosnacy, zatem jest

ograniczony réwniez od dotu (przez swéj pierwszy wyraz). Rzeczywiscie, na mocy
nieréwnosci Bernoulliego

. 1 n+1 ) 1 ntlopn
6n+1_(+n+1> _[< +n—i—1> }

n-+1 1 n 1\
>[1+ . ] :<1+—) —e
n n—+1 n

(2.4)

Méwimy, ze liczba g jest granica ciagu liczbowego {a,}>° |, jesli w kazdym
przedziale otwartym zawierajacym g znajduja sie prawie wszystkie wyrazy ciagu
(tzn. wszystkie poza, by¢ moze, skonczong iloscia).

Definicje te mozemy zapisaé réwniez tak:

g=lma, < Ve>0 INeN Vn>N Ja,—yg|<e.

n—oo

Uwaga. Jesli w ciagu {a,} zmienimy, usuniemy lub dodamy skoriczona ilo$é
wyrazéw, to nie bedzie to mialo zadnego wplywu ani na zbieznos¢ ciggu ani na
wartos$¢ granicy.

Uwaga. Jesli ¢ > 0 jest pewna stala, to wystepujacy w definicji warunek
Ve>0 INeN Vn>N la,—g|<e
jest réwnowazny nastepujacemu:
Ve>0 INeN VYn>N |a,—g|<c-e.

7 tego powodu moéwi sie czasem o ,elastycznosci epsilona”.

2.5. Przyklad. Pokazemy, ze

lim — =0.
n—oo M,

Istotnie, dla ustalonego e > 0 nieréwnos¢ |+ — 0| < ¢ zachodzi dla wszystkich
n > %, tzn.
1 1
Ve n>- = —¢€(—¢5¢).
£ n
Jako wskaznik N wystepujacy w definicji mozna wiec przyjac

N = [ﬂﬂ.



2. Nieskonczone ciagi liczbowe 11

2.6. Przyklad. Pokazemy z definicji, ze

n — —

15n — 1 5
Ustalmy dowolnie liczbe € > 0. Chcemy pokazac¢, ze dla dostatecznie duzych n
zachodzi nieréwnosé

1
b, — | <e.
5 9
Poniewaz
3n+4 I ’ 21 ’ B 21
15n—1 51 I5(15n—1)1  5(15n —1)’
wiec
1 21 + 5¢
b, — =] < & 21 <h(lbn -1 & > )
| <€ (15n — 1)e n .
zatem pokazaliSmy, ze
2145 1
Ve>0 IN=[TE] 41 e N -l <e
7He 5

2.7. Przyklad. Pokazemy, ze ciag stalty o wyrazach a, = ¢ ma granice réwng c.
Rzeczywiscie, jesli ustalimy dowolnie € > 0, to nieréwno$¢

la, —c| =lc—c|=0<c¢

jest speliona dla kazdego n € N.

2.8. Przyklad. Zauwazmy, ze

lima, =0 < lim |a,| =0,

n—oo n—oo

gdyz |a, — 0] = ||an] — 0‘.
Whprost z definicji wynika nastepujacy wniosek.

2.9. Wniosek. Jezeli a, — a i b, — b oraz a, <b, dlan €N, toa <b.
Nieco dalej idzie wazne twierdzenie o trzech ciagach.

2.10. Twierdzenie (o trzech ciagach). Jesli ciqggi {a,} i {b,} sq zbiezne do tej
samej granicy g € R, a cigg {x,} ma wlasnosé

vneN a, <z, <b,,

to {x,} jest rowniez zbiezny do g.

Dowéd. Niech € > 0. Poniewaz lima,, = g, wiec istnieje N; € N, takie ze jesli
n > Ny, to |a, —g| < &, czyli g — e < a, < g+ . Podobnie dla ciagu {b,}
istnieje Ny € N, takie ze g — ¢ < b, < g+ ¢ dla n > N,. Wtedy dla kazdego
n > N3 = max{N;, No} mamy

g—e<a,<x,<b,<g+e,
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czyli
|~Tn - g| <g,

co oznacza, ze ciag {x,} réwniez zbiega do g. O

Uwaga. OczywiScie w twierdzeniu tym wystarczy zalozy¢, ze nieréwnosc¢
an < Tp < by
zachodzi dla prawie wszystkich n € N, gdyz (jak zauwazyliSmy wezedniej) skoriczo-
na ilo$¢ wyrazéw ciagu nie ma wplywu na istnienie i wartos¢ jego granicy.
2.11. Wniosek. Jesli a, — 0 oraz 0 < b, < a, dlan €N, to rowniez b, — 0.

2.12. Twierdzenie. Kazdy ciqg zbiezny jest ograniczony.

Dowdéd. Wezmy dowolny ciag zbiezny

n—oo

a, —— a € R.
Wtedy istnieje liczba N € N, taka ze jesli n > N, to |a,, — a| < 1. Poniewaz
|lan| = lal| < lan —al,
wiec
Vn >N |a,| < |a|+ 1,
zatem
Vn e N |a,| < max{|a| + 1, |a1], |az], |as], ..., |an-1]},

czyli {a,} jest ograniczony. O

Zauwazmy, ze implikacja w druga strone oczywiscie nie jest prawdziwa. Jako
przyktad rozwazmy ciag o wyrazach a,, = (—1)". Jest on ograniczony, bo |a,| < 1,
ale nie jest zbiezny. Przypu$émy bowiem, ze a, — g, gdy n — oo, dla pewnego
g € R. Wtedy istnialaby taka liczba N € N, ze |a, — g| < 1 dla n > N. Dla takich
n mieliby$my wiec

|an+1 - an‘ - |(_1)n+1 - (_1)n| =2
i jednoczesnie
|an+1 - an| = |an+1 —g+g— an| < |an+1 - g| + |g - 6Ln| < 2,
co nie jest mozliwe.
Méwimy, ze ciag jest rozbiezny, jesli nie ma granicy liczbowej. Méwimy, ze ciag

{a,} jest rozbiezny do nieskoniczono$ci (ma granice niewladciwa réwna oo)
i piszemy lim a, = oo, jesli
n—oo

VM >0 dNeN VYn>N a, > M.
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Méwimy, ze {a,} jest rozbiezny do —oco (ma granice niewlasciwa réwng —oo)
i piszemy lim a, = —o0, jesli
n—oo

VM >0 dANeN VYn>N a, < —M.

2.13. Przyklad. Ciag o wyrazach a,, = n jest rozbiezny do co. Istotnie, dla dowol-
nej liczby M > 0, nier6wnosé¢ a,, > M zachodzi dla wszystkich n > [M] + 1.

2.14. Przyklad. Ustawiajac ,,metoda tablicowg” wszystkie liczby wymierne w
ciag nieskonczony, otrzymamy przyktad ciagu, ktory nie jest ograniczony, zatem
nie jest tez zbiezny. Ciag ten nie ma nawet granicy niewlasciwej.

2.15. Fakt. Niech bedg dane dwa ciggi {a,} i {b,}. Jesli lim b, = oo oraz dla

prawie wszystkich n € N a,, > b, to rowniez lim a, = oco.

n—oo

2.16. Przyklad. Poniewaz 2" > n dla wszystkich n € N, wiec

lim 2" = oo.

n—oo

2.17. Fakt. Niech {a,} bedzie ciggiem liczbowym. Wtedy

lim a, =00 <& lim(—a,) = —o0.

n—oo n—oo

Przyktadami ciaggéw rozbieznych do —oo sa wiec

{=n}nen; {—2"}nen, {—n-2"}nen.

2.18. Fakt. Jesli lim z, =z, to lim |x,| = |z|.
Dla dowodu wystarczy zauwazy¢, ze ||z,| — |z|| < |z, — z].

2.19. Twierdzenie (arytmetyczne wlasnosci granic). Niech {a,} i {b,} bedq cig-
gami liczbowymi. Niech ponadto o € R. Jesli lim a,, = a oraz lim b, = b, to

(a) r}in;o(aan) = aa, o o
(b) T}Lrgo(an +b,) =a+b,
(c) T}erolo(an - by) = ab.
Jesli ponadto b # 0 1 b, # 0 dla kazdego n € N, to
(d) lim ¢ =

nﬂoob_: %‘
Dowdd. (a)— (c). Niech € > 0. Wtedy

lima,=a = 3dIN;eN VYn>N; |a,—a|]<e¢

n—oo
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oraz
limb,=b = 3N, €N Vn>N, |b,—b|<e.

Zatem nieréwng_é)go
laa, —aa| = o - |a, —a| < |ale
jest spetniona dla kazdego n > Ny, co pokazuje wtasnos¢ (a). Natomiast nier6wnosé
l(an +b,) — (a+0)| <|a, —a|l+ b, — b < 2¢
jest spetniona dla kazdego n > max{ Ny, N2}, co dowodzi wlasnosci (b). Poniewaz
ciag {a,} jako zbiezny jest ograniczony, wiec
dK >0 VYneN Ja,| <K
i dla kazdego n > max{Ny, No} mamy
|anb, — ab| = |a,b, — a,b+ a,b — ab|
< |an] - [bn = b + |an — al - 0]
<K-e+|bl-e=(K+1b|)-e,
co potwierdza wlasnosé (c).
(d). Wobec wlasnosci (¢) wystarczy pokazaé, ze

lim l = 1
n—cob, b
Na mocy Faktu 2.18 mamy
Tim [b,] = .

a stad

b
dN; e N ¥n> Ny |b,| > %

Niech € > 0. Wobec zbieznosci ciagu {b,,}

AN, €N ¥Vn> Ny |b, —b| <e.
Stad dla kazdego n > max{N;, No} mamy
|b— by, £ 2

1_1’_ - B .
L U

Tym samym dowdd zostal zakonczony. 0O
Przez indukcje tatwo wyprowadzamy nastepujacy wniosek.
2.20. Wniosek. Niech bedg dane zbiezne ciqgi {a;’“)};o:l, gdzie 1 <k < N. Wtedy
N N
lim Zaﬁl’“) = Z lim a®
k=1 k=1

oraz

N N
lim H a® = H lim .
TS =1
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2.21. Przyktad. Rozwazmy ciag geometryczny {q¢"}, gdzie ¢ > 0. Z nieréwnosci
Bernoulliego dla kazdego n € N mamy

"=1+(@q-1)">1+nlg-1)>(q—1) n
(1) Zalézmy, ze ¢ > 1. Wtedy ¢" > ¢, - n, gdzie ¢, = ¢ — 1 > 0 i wobec tego

g>1 = lim ¢" = oo,

n—oo

bo lim ¢-n =00 dla ¢ > 0.

n—oo

(2) Zatézmy, ze q € (0,1). Wtedy

1 1\ 1 1
->1 = <—> ><——1>n = ¢"<d; —
q q q n

gdzie d, = qu, i wobec tego

bl

qe(0,1) = lim ¢" =0,

n—oo

bo lim d-+ =d lim £ =0 dla dowolnego d € R.

n—oo n—oo

Niech beda dane dwa ciagi rozbiezne do nieskonczonosci. Méwimy, ze ciag {a,}
jest szybciej rozbiezny niz ciag {b,} i piszemy a,, > b,, jesli

2.22. Przyklad. Rozwazmy ciag geometryczny {q"}5°,, gdzie ¢ > 1, oraz ciag
potegowy {n®}>2 ,, gdzie i @ > 0. Wiemy juz, ze obydwa ciagi sa rozbiezne do oo
oraz ze zachodzi nieréwnos¢ ¢" > ¢ - n dla pewnej dodatniej statej c. Co wiecej,

q" = [(H (¢— 1))gr

> [1+%(q—1)r

— 1\ 8
> (QT) P =cyp-n’

dla wymiernych 0 < § < n. Zatem dlan > § > a + 1 otrzymujemy

B
q" _ Cqp M
Tl_a - n 2 Cq’ﬁ ke
a stad
n
lim 4 _ 0,
n—oo N
czyli
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2.23. Przyklad. Poréwnajmy teraz ciag geometryczny {q¢"}>°,, gdzie ¢ > 1,
z réwniez rozbieznym do oo ciagiem {n!}°° . Zobaczymy niedtugo, ze (patrz Przy-
ktad 2.32)

(2.24) nl > <%>"

Poniewaz dla dostatecznie duzych n mamy 2 > q?, wiec dla takich n otrzymujemy

n| > (q2)n _ q2n _ qn . qn’

a stad
n! n—o0
— > ¢ ——
n
Zatem
n!
lim — = oo,
n—00 qn
czyli
n! > q¢".

Pamietajac, ze n! > ¢" > n® (gdzie ¢ > 1 i a > 0) mozemy latwo znalezé
wartosci granic niektérych ciggoéw, np.

(&)n on
lim %9 = Jim = = oo
106 2 ’
n—oo M n—oo N
' (1010)n ) on
lim = lim — =0.

Policzmy teraz kilka waznych granic.

2.25. Fakt. Jesli a > 0, to
lim Va =1.

Dowdéd. Rozpatrzmy najpierw przypadek, gdy a > 1. Niech € > 0. Wtedy ciag
{(1+¢&)"}22, jest rozbieznym do co ciagiem geometrycznym, wiec
AINeN VYn>N (1+¢&)">a.
Stad dla kazdego n > N mamy
Va—1<e.
Poniewaz dla a > 1 réwniez a > 1, wiec dlan > N
|Va—1=a—1<e.

Jesli natomiast 0 < a < 1, to é > 1, zatem z powyzszego

) ) 1
1= lim {/— = lim —,
n—oo a n—oo {L/a

wiec na mocy wlasnosci (d) Twierdzenia 2.19 otrzymujemy lim {/a =1. O
n—oo
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2.26. Fakt. Zachodzi nastepujgca rownosé:

lim ¥/n = 1.

n—oo

Dowéd. Niech € > 0. Wtedy 1 4+¢ > 1, zatem (1 +¢)" > n, tzn.

) n
Ty
a stad
INeEN ¥n>N —0 <1
(I+e)n
Wtedy dla kazdego n > N mamy
Un<1+e,

czyli
|/n—1]=Yn—1<e,

co, wobec dowolnosci wyboru ¢, dowodzi tezy. 0O

2.27. Fakt. Zachodzi nastepujgca rownosé:

lim W:oo.

Dowdéd. Na mocy nieréwnosci (2.24)
n n
Vnl > 3
co wobec rozbieznoéci do oo ciggu {3} pociaga tezg. O

Wspomniang na wstepie wlasnosé cigglosci zbioru liczb rzeczywistych wygodnie
bedzie sformulowaé¢ w jezyku teorii zbieznosci ciagow.

Aksjomat cigglosci. Kazdy rosnqcy i ograniczony z gory ciqg liczb rzeczywistych
jest zbiezny.

Wystarczy zastosowac¢ aksjomat ciagtosci do ciggu o wyrazach przeciwnych, by
otrzymac

Whiosek. Kazdy malejgcy @ ograniczony z dotu cigg liczb rzeczywistych jest zbie-
zny.

Jak pokazaliSémy wczesniej (patrz nieréwnosci (2.2) i (2.4)) ciag o wyrazach

1\"n
en:<1+—)
n

jest scisle rosnacy i ograniczony, wiec, na mocy aksjomatu ciagtosci, zbiezny. War-
tosé jego granicy nazywamy liczbg e.
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Dowéd. Oczywiscie ciag

jest $cisle rosnacy i, jak wynika z nieréwnosci (2.2), ograniczony, a wiec zbiezny.
Oznaczmy jego granice przez a € R. Wiemy juz takze, ze

Vn e N en:<1+%>n§§:%:an,
k=0

wiec na mocy Wniosku 2.9 jest e < a. Pozostaje dowieS¢ nieréwnosci przeciwnej.
W tym celu ustalmy liczbe m € N. Wtedy dla dowolnego n > m

1IN = /n\ 1
>e, = (1 _> _ 2
e=¢ <+n ;(k;)n’f

B nn—1)...(n—k+1)
Zkl nk

(2:29) 1 1 2 k—1
=1+;y(1—;><l—;) (t-=)
-2 (-5 <1

Zauwazmy, ze

Vj €N hm(1—l>:1,

n—00 n

a stad na mocy Wniosku 2.20
=1 1 2 k—1 =1
lim z, = li —(1——)(1——)...(1— ): =
g = Jim ) (=) (-5 )Tl
Przechodzac wiec w nieréwnosci (2.29) do granicy, gdy n — 0o, otrzymujemy
N1 =1
(& > 1 Z _' == kzzo k'_ = A,

a stad, jeszcze raz korzystajac z Wniosku 2.9, dostajemy e > a. O
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2.30. Przyklad. Nastepujaca nieréwnosc okresla, jak doktadnie kolejne sumy czes-
ciowe a,, przyblizaja liczbe e:

1
n-n!

"1
(2.31) Vn e N O<e—zﬁ<
k=0

Aby ja uzasadnié, zauwazmy, ze dla dowolnego n € N

"1 =1 1
Clp=imd g
=0

k=0 k=0
_ Tl "1
:Jlféo( E‘ZH)
k=0 k=0
= i S 1
=lim

o ile m > n. Oszacujmy wyrazy tego ciagu. Mamy

ii— S S

S K (n+1! " (n+2)! 7 ml
! (1+ + ! +...+ ! >
~ (n+1)! n+2 (m+2)n+3) T n+2)(n+3)...m

IN

1 1 1 1
— (1 et
(n+1) ( T2 T2 (n+2)m—n—1>

1 1—W< 1 n+2
m+1)! 1-—5 ~(+1)! n+l

I (n+2n 1 n?+2n - 1
n-nl (n+1)2 n-n n24+2n+1 n-n!

Poniewaz prawa strona ostatniej stabej nieréwnosci nie zalezy od m, wiec réwniez

, | 1
%Hgb EE: Zﬁ < n-7ﬂ'
k=n-+1

2.32. Przyklad. Dla kazdej liczby naturalnej n zachodzi nastepujaca nieréwnosé:

Ul > 2
(&



20 Analiza B

Dla dowodu zauwazmy, ze dla dowolnych liczb naturalnych m,n mamy

1 n+1] ™ 1 m(n+1) m(n+1) 1 1
() )T )
n n k n

k=0
S 14 (m(n%—l))i
m nm
L ) -
m! n
7=0
m—1
1 _
=1+ — <m+ j)
m! n
7=0
m—1
1 1
> 14+ — m=1+— -m",
m)! m)!
§=0

a poniewaz prawa strona nie zalezy od n, wiec mozemy przejs¢ do granicy, gdy
n — 00, otrzymujac

skad

2.33. Przyktad. Pierwiastek z dowolnej liczby naturalnej jest albo liczba natu-
ralng albo niewymierng. Zalézmy bowiem, ze dla dowolnej liczby naturalnej n

V==,
q

gdzie p € N, g € Z \ {0} oraz p i q sa wzglednie pierwsze. Podnoszac obie strony
do kwadratu, otrzymujemy rownos¢ rownowazng

()

TLq2 = p2.

a stad

Gdyby liczba ¢ miata jaki§ dzielnik pierwszy, to musialby on dzieli¢ réwniez prawa
strone, czyli liczbe p, a tak by¢ nie moze (bo p i ¢ sa wzglednie pierwsze), zatem ¢
nie ma dzielnikéw pierwszych, czyli ¢ = 1, co oznacza, ze /n =p € N.

2.34. Fakt. Liczba e jest niewymierna.
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Dowdd. Zalézmy nie wprost, ze e = §, gdzie p, q € N sg wzglednie pierwsze. Dla
n = ¢ nieréwnosé¢ (2.31) przyjmuje wtedy postaé

0<p—§qj1< !
| gl
q k:ok‘ q-q

Mnozac obie strony przez ¢!, otrzymujemy

Q

<<

| =
Q| =

0<plg—1)!—gq-
k=0

Aby uzyska¢ sprzecznosé, wystarczy zauwazy¢, ze liczba

q
q!

a=plg-1!-Y L €O
k=0

jest naturalna. O

2.35. Przyklad. Niech bedzie dana liczba ¢ > 0. Zdefiniujmy rekurencyjnie ciag
przyblizen {z,} kwadratowego pierwiastka z c. Niech mianowicie xo > +/c bedzie
dowolne i niech

1
xn+1:§<xn+§>, dlan=20,1,2,3,...

Zauwazmy, ze xo > /c oraz

1 c c
$n+1:—($n+—)2 Inl__:\/zu

2 Tn

wiec {x, tnen jest ograniczony z dotu przez /c. Ponadto

1 c c
Tp41 = 5 Tn + I_ < max {:Enn $_} = Tn,
n n

bo x, > /¢ > ¢/x,. Stad

czyli {z, }nen jest malejacy, zatem zbiezny do pewnej granicy x > 4/c.
Aby obliczyé x, przejdzmy do granicy z n — oo we wzorze definiujacym ciag,

otrzymujac
1 n c
r=—=x+ -
2 x)’
skad
c
r=—,
x

a poniewaz x > 0, wiec
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Obliczmy dla ilustracji przyblizenia v/2, jakie mozna otrzymaé¢ tym sposobem.
Przyjmujac z¢o = 2, widzimy, ze
3 17 LY
=—-=1.5 = — ~ 14167 = — ~ 1.4142.
T T BT T 08

Ostatnie przyblizenie jest bardzo dobre, ale i poprzednie jest juz niezte.

2.36. Przyklad. Rozwazmy ciag o wyrazach

UL (—1)kH! 1 1 1 1
=) —— =1 - =4 (=)
T p g oty

Ciag ten oczywiscie nie jest monotoniczny. Mimo to wywnioskujemy jego zbieznosé
z aksjomatu ciggtosci. W tym celu przyjrzyjmy sie ciggom
by, = agn—1
oraz
Cp = Qo
Zauwazmy, ze
1 1

<0
2n + 1 2n

() (1)
2) T\37 1
1 1 1
+(2n—3_2n—2)+(2n—1) >0,

gdyz kazdy ujety w nawias sktadnik sumy jest dodatni. Zatem ciag {b, }, jako male-
jacy i ograniczony od dotu, jest zbiezny (na mocy akjomatu ciagloéci). Oznaczmy
jego granice przez b € R. Podobnie dla ciagu wyrazéw parzystych ciagu {a, } mamy

1 n 1 S
2n+2 2n+1

wmre (e D) (S e
2" 3 475
1 1 1
+(_2n—2+2n—1)+(_%)<1

(gdyz kazdy ujety w nawias sktadnik sumy jest ujemny), wiec ciag {c, } jest zbiezny,
jako rosnacy i ograniczony z géry. Oznaczmy jego granice przez ¢ € R. Zauwazmy
ponadto, ze

bn+1 — by, = A2p+1 — A2p—1 =

oraz

0

Cp+1 — Cp = A2p42 — A2p =

oraz

1
2n
wiec przechodzac do granicy z n — oo, dostajemy

b=c.

Cp — Op =
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PokazaliSmy w ten sposéb, ze ciagi {a,} i {b,} sa zbiezne do tej samej granicy,
zatem w kazdym przedziale otwartym zawierajacym b = c¢ znajduja sie prawie
wszystkie wyrazy ciagu {a,} o numerach parzystych i prawie wszystkie o numerach
nieparzystych, czyli tak naprawde prawie wszystkie wyrazy tego ciagu, co oznacza,
ze ciag {a, }nen jest zbiezny. Troche pézniej zobaczymy, Ze jego granica jest réwna
log 2.

2.37. Przyklad. Rozwazmy cigg zdefiniowany rekurencyjnie w nastepujacy spo-
sob:

pL=ac (07 1)7

pn+1:pna+(]—_pn>ﬁ7 n:172’37"'7

gdzie 0 < o < B < 1. Gdyby ciag {p,} byl zbiezny do pewnej granicy p, to
przechodzac w ostatniej réwnosci do granicy z n — oo, otrzymaliby$Smy

p=pa+(1-p)b,
a stad
p
1+8—a
Pokazemy, ze ciag {p,} rzeczywiscie jest zbiezny do granicy p (jej warto$¢ nie zalezy
od wyboru p; = a). W tym celu zauwazmy najpierw, ze ciag {p,} jest ograniczony,
gdyz

p:

plzae(ovl)

oraz

Pn+1 :pna+(1_pn)ﬁ>0
mel) = {pn+1=a+(1—pn)(ﬂ—a)<a+(ﬁ—a)=ﬁ<1-

Przypusémy teraz, ze
Prn+1 2 Pn—1-
Wtedy
Pry2 = Pnp10+ (1 = pp1)B = (@ — B) puy1 + 0

S (a_ﬁ)pnfl +/6:pn
Dla ustalenia uwagi zatézmy, ze p3 > p;. Wtedy z powyzszego wynika, ze {par—1} 52,
jest rosnacy oraz {po}32; jest malejacy. Analogicznie, jesli p3 < pi, to pod-
ciagg wyrazow nieparzystych jest malejacy, a podciag wyrazéw parzystych jest ros-
nacy. Zatem obydwa podciagi, jako ograniczone i monotoniczne, sg zawsze zbiezne.
Kazdy z nich spelnia ponadto te samg rekurencje:

Prn+1 :pn@+(1 _pn)ﬁ
:6+pn(a_ﬁ>

=0+ (pnfl a+(1 —Pmlm)
=8(1+ (= 8) +pusla -2
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wiec przechodzac z n — 0o, otrzymujemy, ze granice obu tych podciagéw sa réwne
p, takiemu ze

p=08(1+(@=8))+pla-H2
a stad
ﬁ<1+(a—ﬁ)) 3
L—(a=p7 ~1-atf

p:

co mieliSmy pokazac.

Dla dowolnego ciagu {x, },en przyjmijmy nastepujace oznaczenie:

/
Ty = Tyl — T

2.38. Twierdzenie (Stoltz). Niech bedq dane dwa ciggi {a,} i {b,}, przy czym
cigg {b,} jest Scisle rosngcy i rozbiezny do oco. Wiedy zachodzi nastepujgea imp-

likacja:
!/

limZ—,”:gER = lim — =g.

n—oo 0 n—00 b

Dowdéd. Bez straty ogdlnosci mozemy przyjaé, ze a; = by = 0 oraz b, > 0 dla
n > 2. Zalozmy tez na razie, ze g = 0. Niech ¢ > 0. Z zalozenia istnieje takie
N; €N, ze

(2.39) Vn > Ny lal| <V e.

Zauwazmy bowiem, ze skoro ciag {b,} jest $cisle rosnacy, to ciag {b,} ma wszystkie
wyrazy dodatnie. Wtedy

An+1 1 -
= a —a
2] =l (g =)
1 n 1 n 1 N1
< —> lail = Do lal+—> " lail
bn-l—l k=1 bn+1 k=N+1 bn-i—l =1
€ - / CN1
n+1 k=Ny+1 n+1

dla wszystkich n > Ny, gdzie N 3 Ny > N; jest dobrane tak, aby

Cn,

Vn>N2 an

Ny
Cn, = Z \aﬂ
k=1

jest stala. Istnienie takiego Ny wynika oczywiscie z rozbieznosci do oo ciagu {b,}.
Tym samym dowiedliémy twierdzenia w przypadku, gdy g = 0.
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Dla dowolnego g € R niech
Oy = Gy — byg.
Wtedy, jak tatwo zauwazy¢ o), = al —gbl,, wiec ciagi {c, } i {b,} spetniaja zalozenia
twierdzenia z g = 0 1 na mocy pierwszej czesci dowodu $* — 0, skad natychmiast
an _ O+ gbn nooo
by by
I tak dowodd zostal zakonczony. O

2.40. Przyklad. Dla ciagu zbieznego ciag kolejnych srednich arytmetycznych jego
poczatkowych wyrazow jest zbiezny do tej samej granicy, tzn.

n—oo a1+a2+---+an n—oo
Ay — Q =

n
Jest to bezposredni wniosek z twierdzenia Stoltza, gdyz dla dowolnego ciagu {a,}
zbieznego do a € R mamy
(ar+ay+ ...+ app1) — (a1 +as+...+a,) n—00
(n+1)—n

wiec réwniez
ap+as+...+a, nooo
n

2.41. Przyklad. Policzmy granice ciaggu o wyrazach

14284384 4 nk
2 k) —
no nk+l1 ’

gdzie k jest dowolna acz ustalong liczbg naturalng. Zauwazmy, ze dla £ = 1 mamy
;o 14+2434+...4n 1 nn+1) 1 n+1l 06 1

= = -t — = - — — —
" n? 2 n? 2 n 2

Stosujac twierdzenie Stoltza, pokazemy ze

Xz

1
Vk e N (k) n=eo, =
Tn k+1

W tym celu ustalmy dowolnie liczbe k& € N oraz przyjmijmy oznaczenia:
an=1F+2F 4384 . 4 nF

oraz

b, = nFt!
= )

Ciag {b,} jest oczywiscie Scisle rosnacy i rozbiezny do co. Zauwazmy, ze

an (n+ 1)* 1 (1+ %)k

b% (n + 1)k+1 —_npkl oy (n_+1)k+1 -1’

gdzie
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oraz
1y k+1 1N k+1
0 [(H ) _1] . {(H_) _1]
n n
k+1
k+1\ 1
= — -1
" {Z ( j )n }
7=0
k41
E+1\ 1 -
e+ Y (M) e )
=2 N 7
wiec
an p—oo 1
b, E+1
a stad, na mocy twierdzenia Stoltza, réwniez
ok noe 1
" k+1
2.42. Przyklad. Rozwazmy ciag o wyrazach
TR
Ty = -4+ -4+ = |—,
2 3 n ) ne
gdzie Q > o > 1. Pokazemy, ze
lim z, = 0.
Istotnie, jesli przyjmiemy oznaczenia
1+ ! + = +...+ =
a, = — 4+ —4...+—
2 3 n
oraz
b, = n®,
to oczywiscie ciag {b,} jest §ciSle rosnacy i rozbiezny do oo oraz
1
al prorec
0< 2 = . ontl
b, (n+1)*—ne
1 1
n+1 ne (14 L) —pe
1 1
< .
“n+l ne-(142)—n
1 1 1 oo
< < 0,

n nel.-a = an®
wiec na mocy twierdzenia Stoltza

n—oo
T, — 0.
Szacujac skorzystalismy z nieréwnosci Bernoulliego:

1 o
<1+—> >14 2
n n
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Kresem gérnym niepustego zbioru £ C R ograniczonego z géry nazywamy
najmniejsze sposrod jego gérnych ograniczen.

Aby wykaza¢ poprawno$¢ tej definicji, pokazemy, ze jesli
Et={yeR: VoeecE x<y}#0,

tow ET istnieje element najmniejszy. W tym celu dla dowolnego n € N przyjmijmy
oznaczenie k
— i . -
kn—mm{kEZ. 2—n€E }
Zauwazmy, ze wtedy

Vn e N kpni1 =2k, lub k,y =2k, —1.

Zdefiniujmy teraz ciag o wyrazach

ko,
Un = o cET.
Mamy
%, k, 2k, — 1 1
T R T

co oznacza, ze ciag {y,} jest malejacy. Poniewaz jest on réwniez ograniczony z dotu
przez elementy zbioru E (E # () z zalozenia), wiec na mocy aksjomatu ciaglosci
jest zbiezny. Oznaczmy jego granice przez y € R. Zauwazmy ponadto, ze

1 k-1
n T . — - E+7
T TI
wiec
1
dz, € E yn—z—n<xn§yn,
a zatem z twierdzenia o trzech ciggach rowniez

Poniewaz dowolny element zbioru E jest ograniczony przez wszystkie wyrazy ciagu
{yn}, wiec jest réwniez ograniczony przez granice tego ciagu, co oznacza, ze réwniez
y € ET. Pokazemy teraz, ze jest to element najmniejszy w tym zbiorze. Przypusémy
bowiem, ze tak nie jest, czyli ze istnieje pewien 3y’ € ET, taki ze ¢y’ < y. Skoro

E >z, S Y
wiec w przedziale (y',y + 1) sa prawie wszystkie wyrazy ciagu {z,}, co przeczy

temu, ze 3y € ET. Pokazaliémy wiec, ze y jest najmniejszym elementem zbioru E™.

Podsumujmy:

2.43. Twierdzenie. Kazdy niepusty i ograniczony z gory zbior E C R ma kres
gorny 1 zawiera rosngcy ciqg elementow zbiezny do tego kresu.

Analogicznie definiujemy kres dolny zbioru ograniczonego z dotu. Czytelnik ze-
chce sam napisaé te definicje i udowodni¢ nastepujacy
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2.44. Wniosek. Kazdy niepusty i ograniczony z dotu zbior E C R ma kres dolny
i zawiera malejgcy cigg elementow zbiezny do tego kresu.

Kolejnym waznym pojeciem niniejszego wyktadu jest pojecie punktu skupienia
ciggu i $cisle zwigzane z nim pojecie podciagu.

Niech bedzie dany ciag {a, }nen. Niech ciag {ny }ren 0 wyrazach naturalnych bedzie
Scisle rosnacy. Wtedy ciag o wyrazach

bk = ank

nazywamy podciagiem ciagu {a,}.

2.45. Twierdzenie. Kazdy podcigg ciggu zbieznego jest zbiezny do tej samej gra-
nicy.

Udowodnienie tego faktu pozostawiamy Czytelnikowi.

2.46. Twierdzenie (Bolzano-Weierstrass). Kazdy ograniczony cigg liczb rzeczy-
wistych ma podcigg zbiezny.

Dowéd. Niech {z,}22, C [a,b]. Podzielmy przedzial [a,b] na p6t i wybierzmy
te polowe, gdzie jest nieskoriczenie wiele wyrazéw ciagu {z, }. Oznaczmy ten prze-
dzial przez [aq,b1]. Niech [as, bs] bedzie ta polowa przedziatu [aq, by], ktéra zawie-
ra nieskoniczenie wiele wyrazéw {x,}. Analogicznie konstruujemy zstepujacy ciag
przedzialow, takich ze
la, — by| =27"a — 0|,

7z ktérych kazdy zawiera nieskonczenie wiele wyrazéw ciagu {z,}. Zauwazmy, ze
wowezas ciag {a,} jest rosnacy i ograniczony z gory przez b, wiec zbiezny do
pewnego a € R, a ciag {b,}, jako malejacy i ograniczony z dotu przez a, jest
zbiezny do pewnego € R. Ponadto

b_a n—00
— 0
2" ’

b, —a, =

wiec
(2.47) a=g.

Wybierzmy teraz podciag {z,, }22, ciagu {x,} w nastepujacy sposéb: Niech
T, € [a1,b1]. Przypu$émy, ze wybraliSmy juz

Ty € [alabl]a Ly € [a2762]7 ceey Tpy € [ak’;bk’]
tak, ze
ny < ng < ...<ng.

Jako x,,  , wybieramy taki wyraz z przedzialu [ak+1,bks1], aby ngy1 > ng. Mozna
to zrobié¢, bo w przedziale znajduje sie nieskonczenie wiele wyrazéw ciagu {x,}.
Skoro
Vk e N akgxnkgbk,
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wiec na mocy (2.47) i twierdzenia o trzech ciagach réwniez

xnk—>a:67

co konczy dowéd. O

Méwimy, ze liczba £ jest punktem skupienia ciagu {z,}, gdy ciag {z,} ma
podciag zbiezny do &.

2.48. Przyklad. Jedli przez A oznaczymy zbior punktéw skupienia ciagu, to
(a) VneN =z, =c = A={c};
(b) Vn € N x, = (=1)" = A={-1,1}%
(¢) 1, m—>a€R = A ={a}.

2.49. Przyklad. Niech {z,} bedzie ciagiem wszystkich liczb wymiernych odcinka
[0,1], a £ dowolna liczba z tego odcinka. Wybierzmy teraz podciag {x,, }ren ciagu
{z,} tak, aby

VkeN  a, € (5—%,&%).

Mozemy oczywiscie wybra¢ taki podciag, gdyz miedzy dwiema réznymi liczbami
rzeczywistymi znajduje sie nieskonczenie wiele liczb wymiernych. Tak wybrany
podciag jest zbiezny do &, co oznacza, ze zbiorem punktéw skupienia ciagu {x,}
jest caly odcinek [0, 1].

2.50. Twierdzenie. Jezeli wszystkie podciggi zbiezne ciggu ograniczonego sg zbie-
zne do tej samej granicy, to sam ciqg jest rowniez zbiezny do tej granicy. Row-
nowaznie, jezeli cigg ograniczony jest rozbiezny, to ma przynajmnie; dwa podciggi
zbiezne do roznych granic.

Dowéd. Niech {z,} C [a,b] bedzie ciagiem rozbieznym. Z twierdzenia Bolzano-

Weierstrassa istnieje podciag

k—o0
— Q.

T,
Z rozbieznodci ciagu {z,} istnieje € > 0 taki, ze poza przedzialem (o — e, o +¢)
znajduje sie nieskoniczenie wiele wyrazéw {z,}, ktére oczywiscie nadal naleza do
przedziatu [a, b], wiec sposréd nich réwniez mozemy wybraé¢ podciag zbiezny, tzn.

k—o00

xmk —>/87

gdzie
Vk e N |Tm, —a] > ¢,
astad [0 —al > ¢, wieca# (. O

Kolejne twierdzenie wynika wprost z powyzszego.

2.51. Twierdzenie. Cigg ograniczony jest zbiezny wtedy 1 tylko wtedy, gdy zbior
jego punktow skupienia jest jednoelementowy.
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Okazuje sie, ze mozna mdéwi¢ o zbieznosci w oderwaniu od pojecia granicy.
Stuzy temu pojecie ciagu Cauchy’ego, ktére jak zobaczymy za chwile, jest w is-
tocie réwnowazne pojeciu ciggu zbieznego.

Méwimy, ze ciag liczbowy {a, }nen jest ciagiem Cauchy’ego (lub ciggiem fun-
damentalnym), jesli

Ve >0 IN e N Vn,m > N la, — an| < e.

2.52. Twierdzenie. Cigg liczb rzeczywistych jest zbiezny, wtedy i tylko wtedy gdy
jest ciggiem Cauchy’ego.

Dowéd. (=) Wezmy ciag zbiezny {a,}. Niech £ > 0. Ze zbieznoéci ciagu wynika,
ze istnieje takie N € N, ze dla dowolnych n,m > N
la, —a|] < e oraz, |ay, —a| < e,

wiec

lay, — am| < 2e.
(<) Wezmy ciag Cauchy’ego {a,}. Wtedy istnieje takie N € N, ze dla kazdego
n>N

la, —an| <1,
czyli

ay — 1 <a, <ay+ 1.

Poniewaz poza tym przedzialem jest tylko skonczona liczba wyrazdéw, wiec caty
ciag {a,} jest ograniczony. Zgodnie z twierdzeniem Bolzano-Weierstrassa istnieje
podciag {an, }ren clagu {a,} zbiezny do pewnego o € R. Pokazemy, ze caly ciag
{a,} jest zbiezny do ae. W tym celu ustalmy dowolnie liczba e > 0. Poniewaz {a,, }
jest fundamentalny, wiec

dANeN Vm,n>N lay, — am| < e.
Natomiast ze zbieznosci podciagu {a,, } do liczby o wynika, ze
JK; € N Vk> K, la,, —af <e.
Poniewaz {n;} jest rosnacy i rozbiezny do oo, wiec
dN> Ky, > K, Vk > Ky ng > N.
Wtedy dla kazdego k > max{K;, K2} mamy
la,, —al <e
oraz
|an, — an| < ¢,
oile n > N, wiec dla takich n
lan, — af <lan — an, | + |an, —a] < 2,

czyli lim, . a, =a. O
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2.53. Fakt. W zbiorze punktow skupienia ciggu ograniczonego istnieje element na-
gmmniejszy & najwiekszy.

Dowdéd. Niech bedzie dany ciag x, € [a,b]. Jest jasne, ze zbidr jego punktéw
skupienia A spelnia warunek A C [a,b], wiec jest ograniczony. Aby dowiesé tezy,
pokazemy, ze = sup A jest elementem zbioru A. Analogicznie pokazuje sie, ze
a=inf A € A.

Niech a; € A bedzie rosngcym ciggiem zbieznym do (. Zdefiniujemy indukcyjnie
podciag {x,, } ciagu {z,}, taki ze

1 1
(254) ak_E < Tp, <6Lk+E, k € N.

Niech a1 — 1 < x,, < a; + 1. Przypu$émy, ze zostaly juz zdefiniowane wyrazy
Ty Ty - - - Tny, gdzie ng < mg < - -+ < ny, spetniajace powyzsze warunki. Ze wzgle-
du na to, ze istnieje nieskonczenie wiele n, dla ktorych

1 1

a ——<zp<a + —,
k+1 R k+1 k1

znajdzie si¢ wéréd nich n = ngyy > ny. Podciag {x,, } zostal wiec zdefiniowany.
Z (2.54) wynika natychmiast, ze granica {x,, } jest 3. O

Niech A bedzie zbiorem wszystkich punktéw skupienia ograniczonego ciagu licz-
bowego {x,, }nen. Wtedy granica gérna ciagu {z, } nazywamy najwiekszy element
zbioru A i piszemy

limsupz, = lim x,, = sup A,
n—oo

n—oo
natomiast granica dolng ciagu {z,} nazywamy najmniejszy element zbioru A
i piszemy

liminf z, lim z, = inf A.

n—oo n—00

Czytelnik sam moze sie latwo przekonaé¢ o prawdziwosci ponizszych faktow:

2.55. Fakt. Dla dowolnego ciggu ograniczonego {a,} zachodzi nastepujgca nierdw-
nosé:

liminf a,, < limsupa,,.

n—oo n—00

2.56. Fakt. Cigg ograniczony {a,} jest zbiezny wtedy i tylko wtedy, gdy

liminf a,, = lim sup a,,.

n—0oo n—oo

2.57. Fakt. Liczba « jest granicq dolng ograniczonego ciggu {a,} wtedy i tylko
wtedy, gdy

Ve >0 istnieje nieskonczenie wiele wyrazow takich, ze a, < a+¢
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oraz

Ve > 0 istnieje tylko skorczenie wiele wyrazow takich, ze a, < a — €.

Zauwazmy, ze pierwszy warunek powyzszej koniunkcji rownowazny jest temu, ze
liminf a, < «a, a drugi nieréwnosci przeciwnej.

2.58. Fakt. Liczba (3 jest granicq gdrng ograniczonego ciggu {a,} wtedy i tylko
wtedy, gdy

Ve >0 istnieje nieskonczenie wiele wyrazow takich, ze a, > [ — ¢
oraz

Ve >0 wstnieje tylko skonczenie wiele wyrazow takich, ze a, > [+ €.

I tutaj pierwszy warunek koniunkcji réwnowazny jest nieréwnosci lim sup a,, > 3,
a drugi nieréwnos$ci przeciwnej.
Trudne pojecie granic ekstremalnych zilustrujemy dowodem nastepujacego faktu.

2.59. Fakt. Niech {a,} bedzie ciggiem ograniczonym o wyrazach dodatnich. Wtedy

. ) a
lim sup a, < limsup il

n—oo n—oo an

Dowéd. Niech 8 = limsup, .., “**. Aby udowodni¢ zadana nieréwnosé¢ wystar-
czy pokazaé, ze dla dowolnego ¢ > 0
limsup a, < 6+ ¢.
n—oo

W tym celu zauwazmy, ze na mocy Faktu 2.58 istnieje N € N, takie ze

Uil c34e >N,
Qp,
Zatem dlan > N
p Ay a .
a, = . Lo NHCLNS(ﬁ—i—a) Nay
ap—1 Ap-2 an
an
=———[B+e)"=C +e)",
(6_’_6)]\7 (6 ) N(ﬁ )
gdzie Cy = (Bi%’ a stad

Ya, < \n/CN<ﬁ+€)
i wobec tego

limsup {/a,, < limsup {/Cx (8 + ¢)

n—oo n—oo

= lim {/Cy (B+¢e)=0+c¢,

n—oo

czego nalezalo dowies¢. O



3. FUNKCJE ELEMENTARNE

Funkcjami elementarnymi bedziemy nazywaé funkcje tozsamosciowy x — x,
funkcje wyktadnicza, funkcje trygonometryczne oraz wszystkie funkcje, jakie moz-
na otrzymaé¢ z wyzej wymienionych droga nastepujacych operacji: ograniczania
dziedziny, dodawania, mnozenia, dzielenia i odwracania funkcji, gdy jest to mozliwe.
Tak wiec wsrdéd funkeji elementarnych znajda sie takze funkcja logarytmiczna,
wielomiany, funkcje wymierne, kotowe, hiperboliczne i wiele innych.

W tym rozdziale podamy precyzyjne definicje tych funkcji i wypunktujemy ich
najprostsze wtasnosci.

Potege liczby dodatniej a o wykladniku naturalnym definiujemy induk-
cyjnie:

Nastepujace wlasnosci potegi o wykladniku naturalnym dowolnej liczby a > 0
sa oczywiste:
(1) a" >0,

(2) a™t™ =a"a™,
(3) jesli a>1 1 n<m, to a" <a™

3.1. Twierdzenie. Dla kazdej liczby dodatniej a i kazdego naturalnego n # 0
istnieje liczba dodatnia y taka, ze y" = a.

Dowdéd. Ustalmy dowolnie liczbe a > 0 oraz n € N. Niech

E={z>0:2"<a}.
Zauwazmy, ze E jest niepusty (bo 0 € E) i ograniczony, gdyz

a<l = FECI0,1]
oraz

a>1 = FEC[0,a]
Stad E ma kres gorny. Niech

y =supb.
OczywiScie y jest liczba nieujemna. Pokazemy, ze y jest szukang liczba, tzn. y" = a.
Zauwazmy najpierw, ze jesli
E> Tk m Y,

to
Vke N z <a,
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wiec na mocy Whniosku 2.9 (i wlasnosci (¢) z Twierdzenia 2.19)
y" < a.

Wystarczy zatem pokazé, ze y” > a. W tym celu, zauwazmy, ze dla kazdego k € N
jest y + = ¢ E, wiec
1\ 7
(v+7) =a,

k
a stad po przejsciu do granicy y" > a. Teraz widaé tez, ze y > 0. O

3.2. Fakt. Niech a >0 ¢ n € N. Jesli dla yy,y> > 0 zachodzi y* = a = yg',
to y1 = yo.

Dowé6d. Skoro

to

co daje teze. O

Mozemy teraz wprowadzi¢ nastepujace definicje. Jesli n € Ni a > 0 jest liczba
rzeczywista, to pierwiastkiem arytmetycznym stopnia n z liczby a nazy-
wamy taka liczbe x > 0, ze 2" = a. Piszemy wtedy

x=a= a%.
Potege liczby dodatniej a o wykladniku wymiernym w = §, gdzie p € Z,
q € N, definiujemy nastepujaco:

y » v a?, p>0
a = Q9 = P —
=577 p<o.

Oczywiscie dla potegi o wyktadniku wymiernym wlasnosci (1)-(3) sa réwniez
spelnione.

Potege liczby dodatniej ¢ o wykladniku rzeczywistym x definiujemy
nastepujaco:
a® =sup{a”: Q> w <z},
gdy a > 1, oraz

gdy 0 <a < 1.

Aby wykazaé, ze definicja ta ma sens, wystarczy sprawdzi¢, ze dla dowolnego
x € R zbiér
B(z)={a": Q3w <z}
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ma kres gérny. Ale al”l € E(z), bo [z] < z, wiec E(z) # (). Ponadto
a" € E(z) = a® < gl
wiec w < [z] + 1, co oznacza, ze E(x) jest ograniczony od gory.
Sprawdzmy teraz, ze potega o wykladniku rzeczywistym zachowuje wltasnosci

(1)-(3). Oczywiscie a® > al*! > 0, bo [z] € Q, co dowodzi (1).
Zamierzamy teraz pokazac, ze

a*V =sup E(x +y) = sup E(z) -sup E(y) = a” - a”.
Niech Q > w < xoraz Q 3 v <y. Wtedy w +v < z 4y, wiec
a’-a’ =a"*t € E(x +v),

skad
av - a¥ < a"tv.
Poniewaz
VOQow<z a¥-a’ < a®ty,
wiec
sup{a”-a": Q3w <z} =a"-a" <a"".
Analogicznie

VQ3v <y a® - a® < a*tv = a® - a¥ < a*tv.

Pozostaje jeszcze dowies¢ nieréwnosci przeciwnej. W tym celu wezmy dowolne
Qou<r+y

Czytelnik sam sprawdzi, ze istnieja w,v € Q, takie ze u = w+viw < x, v <.
Wtedy

skad
a*t =sup{a": Qo u<z+y} <a"-a’.
Zatem i wlasno$¢ (2) jest speliona. Przechodzac do dowodu (3) zauwazmy, ze
jesli z < y, to
Ju,v € Q r<u<wv<y,
wiec
a® =sup{a”: Q3w <z} <a" <a’<sup{a”: Q3w <y} =da",

bo (3) zachodzi dla wyktadnikéw wymiernych u < v.

Zauwazmy jeszcze, ze dla kazdego a > 11 kazdego x € R
(3.3) la® — 1] < a*l — 1.
Rzeczywiscie, jesli x > 0, mamy po prostu rownosé, a jesli x < 0, to
la® —1|=1-a"=da"(a®—1)<a®—1=a" -1,

bo a® < 1.
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Dla dowolnego a > 0 funkcje
R> 2+ a” € (0,00)
nazywamy funkcja wykladnicza o podstawie a. Jesli a = e, to funkcje

T — e*

nazywamy po prostu funkcja wykladnicza.

3.4. Twierdzenie. Niech a > 0. Wtedy

n—00 Tp MO0

T, —— x €R = a a®.

Dowéd. Przyjmijmy najpierw, ze a > 110 # x,, — 0. Dzigki nieréwnoéci (3.3)
wystarczy rozpatrzy¢ przypadek x,, > 0. Niech € > 0 i niech z, < w, < 2z,, gdzie
w, € Q. Na mocy nieréwnosci Bernoulliego

€ €
(1+€)1/x">(1—|—5)1/w">1+w—n>1+£>a,

jesli n jest dostatecznie duze, czyli
a" —1<e,

a to dowodzi naszej tezy.
Jesli teraz x, — x, to

Tn

0" — a*| = a®la% — 1],

gdzie y, = x, —xr — 0 1 mozemy skorzysta¢ z juz przeprowadzonej czesci dowodu.
Wreszcie, gdy 0 < a < 1, to

co konczy dowéd. O

Obecnie mozemy uzasadni¢ nieréwnos$é¢ Bernoulliego dla wyktadnikéw niewy-
miernych.

3.5. Wniosek. Dla kazdego 1 <y € R i kazdego v > —1 zachodzi nierownos$é
(I1+2)! >1+yx.
Dowdéd. RzeczywiScie, niech «,, > y bedzie ciagiem liczb wymiernych zbieznym
do y. Wtedy na mocy Twierdzenia 3.4
(I1+x)Y = 7111~>r20(1 + x)o"
> lim (14 a,x) =1+ yx

n—oo

dlaz>—-1. 0O
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Zwroémy przy okazji uwage, ze dla 0 < y < 1 zachodzi nieréwnos$¢ przeciwna
(14+2z) <1+yxz, x> —1,

co tatwo wydedukowaé z nieréwnosci Bernoulliego, podnoszac obie strony do po-
tegi 1/y. Z tej za$ nieréwnosci natychmiast wynika kolejna

(3.6) " <1+ (e—1)z

dla 0 < z < 1. W tej ostatniej nieréwnosci mogliby$my zreszta zastapi¢ e przez

jakakolwiek liczbe a > 0.

Podobnie jak Wniosku 3.5 dowodzimy nieréwnosci
(3.7) (14+z2)* <142
dlaz >010 < a <1, wychodzac od Wniosku 1.5.

3.8. Twierdzenie. Niech 0 < a, — a > 0. Wiedy dla kazdego x € R

r N—00 xT

a, —— a”.
Dowdéd. hatwo zredukowaé¢ dowdd do sytuacji, gdy a = 11z > 0, co pozosta-
wiamy Czytelnikowi jako ¢wiczenie.

Niech najpierw x > 1. Niech 0 < ¢ < % Wtedy dla dostatecznie duzych n € N

an>1-5  1ay>1- 2,
x x
wiec
EN\? EN\T
a§><1——> >1-—e¢, (l/an)$><1——> >1-—e¢,
x x
skad
1
l—e<a, < —— <142,
1—-¢
tak jak chcielismy. Mamy bowiem
1 l—e+e €
= =1 <1+ 2e.
1—¢ 1—e¢ +1—5_ e

Jesli natomiast 0 < = < 1, rozumujemy podobnie. Dla dostatecznie duzych
neN

an <145, 1a, <1+ 5,
s s
wiec
EN\T EN\Z
a§<<1+—) <1+, (1/an)z<<1+—> <1+,
Xz Xz
skad
1
l—e<—<a, <1l+eg,
1+¢

co konczy dowéd. O
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3.9. Fakt. Jesli 1 < a,, — o0, to
A= (1+1/a,)" —e,  By=(1-1/a,) " —e,

Dowdéd. Przyjmijmy najpierw, ze a, € N. Wtedy wszystkie wyrazy ciagu {A,}
sg rowniez wyrazami ciggu o wyrazach

e, = (14+1/n)"
z co najwyzej skonczong ilo$ciag powtorzen, wiec

lim A, = lim e, = e.

n—oo n—oo

Dla dowolnego ciagu {a,} skorzystamy z twierdzenia o trzech ciagach. Mamy

bowiem
1 [an] 1 [an]+1
1+ — <A, <|(1+—
( [an] + 1) N ( [an])

i na mocy pierwszej czesci dowodu skrajne ciagi sa zbiezne do e.
Druga czes¢ tezy wynika z réwnosci

a an 1 an
= (o) = (1 o)
an, — 1 +an—1

i wezesniejszych rozwazan. 0O

3.10. Twierdzenie. Dla kazdego v € R
(3.11) lim (1+a/n)" =¢".

|z|<n—oo

Dowdd. Jedliz = 0, teza jest trywialna. Jesli x # 0, to a, = 2 — £oo zaleznie

od znaku x. W obu przypadkach
(14+a2/n)" = ((1 + 1/an)a"> — e”
na mocy Faktu 3.9 i Twierdzenia 3.8. 0O

Przyjrzyjmy sie jeszcze ciagowi (3.11). Jedli x # 0 i n > |z|, to z nieréwnosci
Bernoulliego wynika, ze

x \nHl AN ! T\"™
<1+ ) — (1+ ) >(1+—>,
n—+1 n+1 n

a wiec ciag ten dla n > |z| jest Scisle rosnacy.

3.12. Wniosek. Dla kazdego x # 0

e >14+x.
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Dla kazdego 0 # x < 1

T
e’ <1+ )
11—z

Dowdd. Jesli x # 0, to dzieki nieréwnosci Bernoulliego
(14+2/n)" >1+u,

wiec po przejsciu do granicy i skorzystaniu z tego, ze ciag (3.11) jest rosnacy,
otrzymujemy

e >14+x.

Stad, jesli dodatkowo < 1,

co konczy dowéd. O

3.13. Lemat. Dla ustalonego x > 0 niech

no ok noo Nk
ap = 95_’ bn: ( x)
k! k!
k=0 k=0
Wiedy
anb, =1+ ¢y,

gdzie ¢, — 0.

Dowdéd. Mamy

k j k j
" (—x)’ a" ()
SR D W
141 141
k!g! Lk T ion k!g!
=1+d,+c,=14cp,

bo
U Py & j
6=3 0 3 (7).
p=1 k+j=p
gdzie

S (Z) e~z = (v + (-2))" =0.

k+j=p
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Aby zakonczy¢ dowdd, oszacujemy wartos¢ bezwzgledna ¢, przez ciag zbiezny
do zera. Istotnie,

k+j

e < D r -

kLl
1<k,j<n i k+j>n

Srr@)-s e

a*(—x)
< 2 k5!

n<k+j<2n

p=n+1"1" k+j=p p=n+1
2n
1 (2z +1)%"
< (2 1)%" - < —
< (2z+1) p:nZHp! T

a ten ciag dazy do zera. Ostatnie oszacowanie pochodzi z Przyktadu 2.30. O

3.14. Twierdzenie. Dla kazdego v € R

Dowdéd. Dla x = 0 réwnos¢ jest oczywista. Dla z > 0 rozumowanie jest identy-
czne, jak w przypadku x = 1 (patrz rozdzial 2), wiec je pominiemy. Wreszcie, teze
dla z < 0 otrzymujemy jako wniosek z przypadku x > 0, stosujac Lemat 3.13. O

3.15. Wniosek. Dla kazdego |x| <1 i kazdego n € N

gdzie

r(z)] < (e=Dlzf,  [ra(z)| <

Dowdéd. Jak tatwo zauwazyé

Jak wiemy z Przyktadu 2.30, dla n > 2
2
k=n

bo |z| < 1. Oszacowanie dla n = 1 widaé¢ bezposrednio. Zatem po przejsciu do
nieskonczonosci z m, widac¢, ze reszty r, spetniaja zadane nieréwnosci. O

o |zt — 1 |z
O T P e
= 2l < |2l ;k! (n—Dln—1)
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Warto dobrze zapamietaé najprostsze przypadki tej nieréwnosci:
e =1+r(z)=1+z+ ()
=1+z+2%/2 4+ r3(z), lz| <1,
gdzie
(@) < (e=Dlal,  fro(@)] < (2P, [ra(@)] < /4.
Dla oznaczenia funkcji wyktadniczej bedziemy tez uzywali symbolu
expr = e”.

3.16. Fakt. Obrazem R przez funkcje wyktadniczq jest cata potprosta dodatnia.

Innymsi stowy,
exp(R) = (0, 00).

Dowéd. Niech dlay >0
E={zxeR:e" <y}

Poniewaz
eV <y < e,

zbiér F jest niepusty i ograniczony z géry. Niech a = sup F. Istnieje ciag o wyrazach
x, € E zbiezny do a, wiec
e’ = lim e™ <y.
n—oo

Z drugiej strony a+1/n ¢ E, wiec

e® = lim V" >y,

n—oo

co konczy dowéd. O

Stad i z wlasnosci (3) potegi wnioskujemy, ze funkcja wykladnicza
exp : R — (0, 00)

jest wzajemnie jednoznacznym przeksztalceniem R na pélprosta (0, 00). Istnieje
zatem funkcja do niej odwrotna

log : (0,00) — R,

ktorag nazywamy funkcja logarytmiczna.

Nastepujace wlasnosci funkeji logarytmicznej wynikaja wprost z definicji:
(1) logl=0, loge =1,
(2) logz -y =logx+ logy, x,y >0,

(3) logz¥ =ylogu, x>0, y€eR,
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(4) a® = e*losa, a>0, reR,
(5) log jest funkcja Scisle rosnaca.

Ponizsze nieréwnosci maja podstawowe znaczenia dla badania funkcji logaryt-
micznej.

3.17. Wniosek. Dla kazdego 0 # x > —1

H% < log(l +l‘) < x.

Dowdéd. Logarytmujac pierwsza z nieréwnosci Wniosku 3.12 dla 0 # x > —1,
otrzymujemy druga z nieréwnosci dla logarytmu. Druga z nieréwnosci Wnios-
ku 3.12

egc<1—|—13j , 0#£z <1,
po podstawieniu y = ;%= > —1, daje
et < 14 Y, y > —1,
a stad przez zlogarytmowanie otrzymujemy pierwsza z naszych nieréwnosci. 0O

Dla z = % otrzymujemy

3.18. Wniosek. Dla kazdego n € N

1 <1 <1+1><1
0 — —.
n+1 & n n

3.19. Wniosek. Dla kazdego 0 < o« < 1 7 kazdego © > 0

1
log(1+4z) < — x“.
a

Dowo6d. Mamy
alog(l+z) =log(l+ 2)* <log(l+ z%) < x¢,

skad po podzieleniu przez o dostajemy zadana nieréwnos¢. SkorzystaliSmy tu
z nieréwnosci (3.7). O

Stosujac twierdzenie Stoltza nietrudno sie przekonac, ze
a”fL

S
lim = = lim &f=Lk
n—oo by, n—oo logn

= 1.

Rzeczywiscie, {b,} jest ciagiem $cisle rosnacym i rozbieznym do nieskorniczonosci
oraz
!/
an_y 1/n

b, - log(1+1/n)

—>1’
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na mocy Wniosku 3.18 i twierdzenia trzech ciagach. Obecnie jestesmy juz gotowi,
aby wskazaé na jeszcze SciSlejszy zwigzek obu tych ciggéw.

3.20. Lemat. Cigg

n

1
Y = — —logn
k=1

jest zbiezny.

Dowéd. Zwréémy najpierw uwage, ze
log(n + 1) —logn =log(l1+ 1/n) — 0,

wiec wystarczy rozwazac ciag

n

1
cn:ZE—log(nle)

k=1

3

=3 L3 (toalk 1)~ logk) = 3 (4~ loa(1 + 1/8)).

k=1

Z Wniosku 3.18 wynika, ze ciag {c,} jest rosnacy, a ponadto

(vt ) <5 ) -y
k=1

wiec jest réwniez ograniczony. Jest zatem zbiezny, a przeciez o to chodzito. O

Granice ciagu {7,} bedziemy oznaczaé przez 7 i nazywaé stala Eulera. Zatem

. "1 . L 1 1
Gt =t 3= 3 (s (+))

Doktadne oszacowanie statej Eulera musimy odltozy¢ na duzo pdézniej. Na razie
wspomnijmy tylko o tym, ze nie wiadomo nawet, czy jest ona liczba wymierna, czy
nie.

Przechodzimy teraz do definicji funkcji hiperbolicznych i trygonometrycznych.
Funkcje
et +e” e’ —e”
coshr = ——— sinhy = ——
2 2
nazywamy odpowiednio cosinusem i sinusem hiperbolicznym. Wprost z defi-
nicji tatwo wynikaja natepujace wlasnosci tych funkcji. Cosinus hiperboliczny jest

funkcja parzysta, a stnus nieparzysta. Ponadto zachodzi wzér
cosh? z — sinh®*z = 1,

zwany jedynka hiperboliczng. Nietrudno tez spostrzec, ze sinh jako suma dwéch
funkcji $cisle rosnacych jest funkcja Scisle rosnagca. Stad i z jedynki trygonometry-
cznej wnioskujemy, ze cosh jest funkcja $cisle rosnaca na pétprostej [0, 0o). Wreszcie
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z Twierdzenia 3.14 wynika, iz
2k n 2k+1

- X X
COShl' = hm E — Sinhﬂf = hm E e ———
n—o00 K n—00 |
—~ (2k)! — (2k + 1)!

Whbrew pozorom podanie $cistej analitycznej definicji funkcji trygonometrycz-
nych nie jest wcale proste. Jednym z mozliwych rozwiazan jest skorzystanie z na-
stepujacego twierdzenia.

3.22. Twierdzenie. Istnieje doktadnie jedna para funkcyi
s:R— R, c:R— R
o nastepujgcych wtasnosciach. Dla wszystkich x,y € R

(1) s(2)* +c(2)* =1,

(2) s(z +y) = s(x)ey) + s(y)e(=),
(3) clz +y) = c(x)e(y) — s(x)s(y),
(4)

4) 0 < ze(z) <s(x) <z dlal <z <l.

Sa to oczywiscie niektére z dobrze znanych wtasnosci funkcji trygononome-
trycznych cosinusa i sinusa. Nasze twierdzenie mowi, ze wyszczegolnione wyzej
wlasnosci sa aksjomatyczne w tym sensie, ze mozna z nich wywie$¢ wszystko,
co skadinad wiemy o funkcjach trygonometrycznych, a takze ze sa one wystar-
czajace do jednoznacznego okreslenia tych funkcji. Nawiasem méwiac, ta druga
cze$é twierdzenia (jednoznacznos$é) przysparza wiecej ktopotu. Czesé pierwsza jest
bardziej elementarna, cho¢ nieco zmudna.

Ze wzgledu na brak czasu nie bedziemy dowodzié tego twierdzenia, ani nawet
systematycznie wyprowadzaé pozostalych wtasnosci funkcji trygonometrycznych.
Podkre$lmy jednak wyraznie, ze np. ciggtos¢ funkcji trygonometrycznych, jak i
okresowo$¢ wraz z wszystkimi innymi ich cechami sa na mocy Twierdzenia 3.22
konsekwencja wtasnosci (1)—(4).



4. GRANICA I CIAGLOSC FUNKCJI

W niniejszym rozdziale zgodnie z jego tytutem wprowadzamy pojecie granicy
funkcji, definiujemy funkcje ciggle i omawiamy ich podstawowe wtasnosci.

Definicja. [Heine| Niech f: R O D — R. Niech 2y € R bedzie taki, by istnialy
liczby a < g < b takie, ze (a,zo) U (29,b) C D. Méwimy, ze funkcja f ma w
punkcie x, granice wlasciwag réwna g, jesli

<‘v’ {Zn}nen C (a, ) U (xo,b)) (a:n T xy = fla,) g).

Piszemy wéwczas

lim f(z) =g.
r—x0

4.1. Przyklad. Zauwazmy, ze

(4.2) lin% sinz = 0,

A & n—oo ’ .. n—oo
gdyz jesli x, —— 0, to réwniez |x,| —— 0, a skoro

n—oo

|sinz,| < |z, — 0,
to takze
. n—oo
sinx,, —— 0.
Wynika stad natychmiast, ze

limcosz =1,
z—0

gdy7 jedli z,, =—= 0, to od pewnego miejsca |z, | < 7 i wtedy
cosz, = (1 — sin? :z:n)% MmNy
4.3. Przyklad. Obliczymy granice funkcji

sinx

€eR

f: R\ {0} >z+—

w punkcie ¢y = 0. Zauwazmy, ze dla dowolnego x > 0 mamy

. sin x
smr <xr < ,
Ccos T
a zatem
1 1 Ccos T

sinez = x  sinz’

i skoro sinxz > 0,
sin

cosT < < 1.

x
Poniewaz sinus jest funkcja nieparzysta, a cosinus parzysta, ta sama nieréwnosé
obowiazuje tez dla x < 0.
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Wezmy teraz dowolny ciag 0 # z,, —— 0. Poniewaz dla duzych n
sin
cos x, < <1
Tn
oraz
limcosx =1,
z—0
wiec
. sinx
lim =1.
x—0 I

4.4. Przyklad. Rozwazmy funkcje
f: R\ {0} 32 +— zsin(l/x) € R.
Zauwazmy, ze
hH(l) flz) = lir%xsin(l/x) =0,
gdyz dla dowolnego ciagu 0 # z,, ——> 0 mamy

n—oo

|z, sin(1/x,)| = |z, - |sin(l/z,)| < |z,| — 0.

4.5. Przyktad. Funkcja f: R — [0,1) zadana wzorem
f(z) = m(z)

nie ma granicy w zadnym punkcie o = ¢ € Z, gdyz na przyktad dla ciagdw

otrzymujemy

4.6. Przyktad. W podobny sposéb pokazemy, ze funkcja
1
f: R\{0}3z+—sin— R
x

nie ma granicy w punkcie zo = 0. Rozwazmy bowiem ciagi

T, = (g + 27m)_1 70, Y = (2mn) 1 =250
Otrzymujemy
Vn e N f(z,) =sin <g—|—27m> =1,
oraz,
Vn € N f(yn) = sin(2mn) = 0,
zatem

Tim f(a,) =17#0= lim f(yn).
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4.7. Przyklad. Sprawdzimy jeszcze, ze dla a > 0

r—1
lim & = loga.
z—0
Mamy bowiem na mocy Wniosku 3.15
T _ 1 zloga __ 1 1
a _e :loch_rQ(x oga)’
x x x

gdzie dla |z| dostatecznie bliskich zera |ry(xloga)| < x%log”a, co pokazuje, 7e
drugi sktadnik sumy dazy do zera.

4.8. Przyklad. Niech 0 < a <b. Wtedy dla kazdego x # 0

T z\ 1/
aﬁ(a —|—b) <.

2

wiec wyrazenie stojace w $rodku, oznaczmy je przez S,(a,b), mozna uwazaé za
rodzaj $redniej liczb a, b. I rzeczywiscie,

at bt a+b

S—l(mb):(T)l, Si(a.b) = =

sa odpowiednio $rednig harmoniczng i arytmetyczna tych liczb. Pokazemy, ze
lin% Sz(a,b) = Vab.

W tym celu zauwazmy najpierw, ze

1 x\ 1/
Sx(a,b):a( ZC ) = aF(z),
gdzie ¢ = b/a > 1. Mamy wiec
1 14c¢*
Flz) = exp (-1 ).
() = exp ( — log —

gdzie wyktadnik spelnia nieréwnosci

c-1 _1 <
— < —lo
z(e*+1) «x 73 2z

log ¢
2

Na mocy poprzedniego przyktadu obie skrajne funkcje daza do

) log c b
lim F(z) = ¢ = Vo = \ﬁ

a stad natychmiast wynika nasza teza.

, wiec

Podamy teraz inng definicje granicy funkcji w punkcie, ktéra, jak pokazemy za
chwile, okaze sie réwnowazna.
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Definicja. [Cauchy] Niech f: R O D — R. Niech zg € R bedzie taki, ze istnieja
liczby a < xy < b takie, ze (a,b) \ {xo} € D. Méwimy, ze funkcja f ma w
punkcie x, granice wlasciwag réwna g, jesli

Ve>0 36>0 VreD (0<\x—x0|<5 = |f(x)—g|<6).

4.9. Twierdzenie. Funkcja f ma w punkcie xy granice rowng g € R w sensie
Heinego doktadnie wtedy, gdy ma jg w sensie Cauchy’ego.

Dowé6d. Przypusémy, ze funkcja f ma granice g w sensie Cauchy’ego réwna, g.
Wezmy dowolny ciag {z,} elementéw dziedziny D funkcji f zbiezny do punktu x.
Chcemy pokazac, ze

n—oo

flxn) — g.
Ustalmy w tym celu dowolnie liczbe £ > 0. Na mocy naszego zalozenia istnieje taka
liczba § > 0, ze

[z =z <6 = |f(x) —gl<e
natomiast ze zbieznosci ciagu {z,} wynika, ze istnieje taka liczha N € N, ze
n>N = |z,— x| <0.

Wobec tego dla takich n

|f('xn> - g’ <Eé.

Przypusémy teraz, ze funkcja nie ma granicy w sensie Cauchy’ego. Wtedy

>0 V6>0 dreD (Jz—mzl<d A |f(z)—gl>e).
Stad, dla kazdego 9, = % mozemy znalezé xy # x,, € D, takie ze

1
|z, — x| < — oraz |f(z,) — g] > €.
n

Pierwsza nieréwno$¢ méwi, ze ciag {x,} jest, zbiezny do zy, a druga, ze ciag
wartosci {f(x,)} nie jest zbiezny do g, co oznacza, zgodnie z definicja wedlug
Heinego, ze lim f(z) #g. O

T—T0

4.10. Przyklad. Zilustrujemy obie definicje na przyktadzie granicy w punkcie
xo = 0 funkeji
f(z) = sinz?.
Wezmy dowolny cigg liczb niezerowych {x,} zbiezny do zera. Wtedy réwniez
22 T,
a stad, na mocy réwnosci (4.2),
2

n—oo
n—0,

sinx

€O oznacza, ze
lim sin 2% = 0

x—0

zgodnie z definicja Heinego.
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Niech € > 0. Poniewaz dla kazdego z
|sin 22| < |z|?,
wiec jezeli |x| < § = /e, to
|sina?| < |z]* < §* = ¢,
cO oznacza, ze

lim sin 22 = 0

z—0

zgodnie z definicja Cauchy’ego.
4.11. Fakt (Arytmetyka granic). Jesli funkcje f i g majg granice w punkcie xg, to
takze funkcje f + g oraz f - g majg w tym punkcie granice i

(1) lim (f + g)(&) = lim f(z) + lim g(x),

T—T( T—T0 T—T0

(2) lim (f-g)(z) = lim f(z)- lim g(z).

Ponadto, jesli lim g(x) # 0, to funkcja 1/g jest okreslona w bliskosci punktu o i
T—x0
(3) lim i(2) = —1~

e S (@)

Dowdd tego faktu pozostawiamy Czytelnikowi jako ¢éwiczenie, przy ktérym war-
to pamieta¢ o analogicznej arytmetyce granic ciagdéw. Zauwazmy jeszcze, ze W
dowolnym punkcie granica funkcji stalej okreslonej na catej prostej jest rowna jej
wartosci. Stad natychmiast otrzymujemy nastepujace wnioski.

4.12. Wniosek. Jesli funkcje f i g majg granice w punkcie xq, to
(1) Va e R lim - f(z) = a- lim f(x),
T— T T—I0

(2) lim {&) = = 0 ile lim g(z) # 0.

T—T0

Wiynika to z faktu, ze dla z # 1
" —1

r—1

:$n—1+xn—2+_‘_+x+17
gdzie kazdy ze sktadnikéw po prawej dazy do 1, gdy x — 1.

4.14. Przyklad. Poprzedni przyktad mozna przy pewnym naktadzie pracy uogdl-
ni¢. Niech o, 8 € R i niech 5 # 0. Wtedy

I % —1 Q
im = —.
r—1 :[jﬂ — 1 ﬁ
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Rzeczywiscie, na mocy Wniosku 3.15
z*—1  evlsr — 1 alogx + ry(aloga)
w8 —1  ePlosz — 1 Blogx + ry(Blogx)’

gdzie |ra(y)| < y* dla [y] < 1, wige

g1 o o
B—-1 ﬁ + 7"2(151&’
ogx
gdzie
ro(7y log x)
8T < 1 log
log =

dazy do zera, gdy x dazy do 1, dla v = a i v = 3, co dowodzi naszej tezy.

4.15. Przyktad. Granica w punkcie zy = 0 funkcji
—1
FR\{0}30— ETT R

x
istnieje 1 wynosi zero. Mamy bowiem

_cosz—1  —2sin*(z/2)

sin(x/2)
() = - - amers)
T x x/2
i poniewaz pierwszy czynnik dazy do 1, a drugi do 0, to wobec wtasnosci (2)
z Faktu 4.11 otrzymujemy

- sin(x/2)

cosx — 1

lim f(z) = lim = 0.

x—0 x—0 €x

Zdefiniujmy teraz granice jednostronne funkcji. Niech f: R © D — R oraz
(a,b) € D. Méwimy, ze f ma granice wlaSciwa lewostronng w punkcie b
rowng «, jesli

V{x,} C (a,b) (2, —20b = flz,) == a),
lub réwnowaznie
Ve>0 Ja<zo<b VzeD (zg<z<b = |f(z)—al<e).
Piszemy wtedy
lim f(x) =«

T—b—
W analogiczny sposéb definiujemy granice prawostronna funkcji w punkcie a,
ktéra oznaczamy przez limJr f(z).
r—a

4.16. Przyklad. Obliczmy obie granice jednostronne czesci utamkowej w punkcie
xo = 0. Poniewaz dla dowolnego ciagu liczb ujemnych {z,} zbieznego do zera

AN Vn >N Ty > —1,

wiec dla takich n
m(z,) =z, — [z, =z, + 1,
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skad
m(z,) 1,
czyli

lim m(z) = 1.

z—0—
Podobnie, w dowolnym ciagu liczb dodatnich {z,} zbieznym do zera, od pewnego
miejsca wyrazy sa mniejsze od 1, wiec ich cze$¢ catkowita wynosi 0. Oznacza to,
ze dla dostatecznie duzych n

m(mn) = Tn,

czyli

lim m(z) = 0.

z—0+
4.17. Fakt. Jesli funkcja f ma w pewnym punkcie xo obie granice jednostronne
oraz

lim f(z)= lim f(x)=a,

T—To— r—x0+

to funkcja f ma w punkcie xy granice rowng a.

Dowdéd. Postuzymy sie definicja Cauchy’ego. Niech bedzie dany € > 0. Z zaloze-
nia wynika, ze istnieja 0, > 01 dy >, takie ze
[f(z) —al <&, |f(y) —al <e

oile zg — 0y < & < xp 129 <y < xog+ d2. Niech 6 = min{dy,d2}. Z powyzszego
widaé natychmiast, ze jesli 0 < |z — zo| <, to |f(2) —a| <e. O

4.18. Przyklad. Pokazemy, ze funkcja

o) = {sinx dla x <0

sinhx dlax >0

ma granice w zerze. Istotnie, skoro dla dowolnego ciaggu {x,} zbieznego do zera
lim e*» = €® =1 (por. Twierdzenie 3.4 wigc

n—oo
lime* =1,
z—0
a stad
et —e "
lim f(z) = lim sinhz = lim
z—0+4 rz—0+4 r—0+ 2
e’ —e "
= 1 _
o0 2 0
Ponadto
lim f(x) = lim sinz = limsinz = 0,
rz—0— z—0— z—0
a zatem
lim f(z) = 0.

x—0
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4.19. Przyktad. Sprawdzimy, ze

xlir& xlogx = 0.

Rzeczywiscie, niech (0,1) 5 x, 2%, 0. Korzystajac z nieréwnosci
1
log(1+4 z) < — 2, 2> 0, 0<a<l,
«
dla o = 1/2, widzimy, ze

|, log x| = |2, log(1/z,)| < 220\/1/, —1 < 2 T _ 23/,
JT

n

skad natychmiast wynika nasza teza.

Definicja. Méwimy, ze funkcja f okreslona na przedziale (a,b) jest ciagla w
punkcie zy € (a,b), jezeli w tym punkcie granica funkcji istnieje i jest réwna
wartosci funkeji, czyli

lim f(x) = f(xo).

T—T0
Méwimy, ze funkcja f okreSlona na przedziale [a,b] jest ciagla w punkcie a
(odpowiednio b), jezeli w tym punkcie granica prawostronna (odp. lewostronna)
istnieje i jest réwna wartosci funkcji, czyli

lim_f(z) = f(a) (odp. lim f(x) = f(b)).

Moéwimy, ze funkcja f okreslona na zbiorze D jest ciggla w przedziale I C D,
jezeli jest ciagta w kazdym punkcie tego przedziatu.

4.20. Przyktad. W rozdziale 3 pokazaliSémy, ze
T, 51 = exp(z,) — exp(z)
(zobacz Twierdzenie 3.4 Oznacza to, ze funkcja wykladnicza
R 3> 2+ exp(x)

jest ciagta w kazdym punkcie z € R.
7 Faktu 4.11 wynika natychmiast

4.21. Fakt. Jazeli funkcje f, g sq ciggle w pewnym punkcie xo nalezgcym do
dziedzin obu funkcji, to funkcje f + g oraz f - g takze sq cigglte w tym punkcie.

4.22. Przyklad. Wielomian jest funkcja ciagla na R. Istotnie, kazdy wielomian
jest funkcja postaci

n

f(:)j) = Zanxna

k=0
wystarczy zatem sprawdzic, ze dla dowolnych liczb o € R oraz n € N funkcja

Ro>zv+— az"
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jest ciagla. Jeszcze raz korzystajac z powyzszego faktu, widzimy, ze cala rzecz
sprowadza si¢ wiec do ciaglosci funkcji stalej i tozsamosciowej x — =z, a to jest
oczywiste.

4.23. Przyktad. Jak wiemy funkcja logarytmiczna log : (0,00) — R jest funkcja
odwrotng do wyktadniczej, ktora jest ciagta. To pozwala wnioskowaé o cigglosci
funkci log. Rzeczywiscie, niech x,, — x wraz z n — oo, gdzie x, x, > 0. Z Twier-
dzenia 2.50 wynika, ze wystarczy, jesli pokazemy, iz dla kazdego zbieznego do y
podciagu {yn, }ren ciagu o wyrazach y,, = log z,, jest y = log z.

Istotnie, na mocy naszych zalozen

xnk — eynk’

gdzie ciag po lewej jest zbiezny do z, a ten po prawej do €Y. Zatem x = €Y, czyli
y = log x.

W dowodzie Twierdzenia 4.38 ponizej jeszcze raz skorzystamy z tego rozumowa-
nia, aby uogélni¢ powyzszy fakt. Tam tez Czytelnik znajdzie wiecej szczegdldw.

4.24. Lemat. Niech bedg dane ciggle funkcje f,g : [a,b] — R. Jesli f(w) = g(w)
dla wymiernych w € [a,b], to f = g.

Dowdéd. Niech z € [a,b]. Niech w, € [a,b] bedzie ciagiem liczb wymiernych
zbieznym do z. Wtedy

f(2) = lim f(w,) = lim g(w,) = g(x).

n—oo n—oo

wiec f=g¢g. O

4.25. Fakt. Zlozenie funkcji cigglych jest funkcjq ciggta, tzn. jesli f: 1 — J,
g: J — K oraz f jest ciggla w punkcie x € I a g w punkcie y = f(x), to funkcja
go f: I — K jest ciggta w x.

Dowdéd. Dla dowolnego ciagu {x,} C I zbieznego do x, z ciaglodci funkeji f
w punkcie z wynika, ze

flan) = f(z) =y,

a stad wobec ciaglosci funkcji g w punkcie y

9(f(xn)) —= gly) = g(f(x)).
PokazaliSmy wiec
V{:L"n}g[ gljnm’gj = gof($n)m>gof(a?),

co zgodnie definicjia Heinego oznacza ciagtosé funkeji g o f w punkcie z. 0O

4.26. Przyktad. Na mocy powyzszego faktu, funkcja
f:(0,00) 32— 2" = exp(zlogz)
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jest ciagta jako zlozenie ciaglej funkcji wykltadniczej (Przyktad 4.20) z funkcja
xr — xlogx,

ktora jest iloczynem dwu funkcji cigglych; jest wiec takze ciggta. Ponadto, mozemy
polozy¢ w zerze taka wartosé, aby przedtuzenie f; funkcji f byto nadal funkcja
ciagta. Mianowicie, z Przyktadu 4.19 i ciagtosci funkcji wykladniczej wynika, ze

lim 2° = lim e®'°8® =1,

r—04+ r—04
a stad
x®, x>0,
T =
filz) {1, xz =0,

jest ciagla na [0, 00).

4.27. Przyklad. Funkcje trygonometryczne sa ciagle na swoich dziedzinach. Oczy-
wiscie wystarczy sprawdzi¢ cigglosé funkeji sinusi cosinus. Ustalmy zatem dowolnie
punkt zo € R i wezmy dowolny ciag {x,} zbiezny do niego. Wtedy
hy = Tp — To —— 0,

skad (na mocy Faktu 4.11 i Przyktadu 4.1)

sin x,, = sin(h,, + zo)

= sin h,, - oS T + €OS hy, - Sin Ty —— sin g

i analogicznie

cos =, = cos(h,, + o)

. . n—oo
= cos h,, - cosxg — sin h,, - sin tg —— €OS .

Ciekawym przyktadem funkcji, ktéra ma wiele punktéw ciaglosci, jak i niecia-
glosci, jest funkcja Riemanna.

4.28. Przyktad. Niech f bedzie funkcja okreslona na calej prostej wzorem

= gdy x = %’, gdzie (p,q) = 1.
Pokazemy, ze f jest ciagla dokltadnie w punktach niewymiernych. Istotnie, jesli
x, — = ¢ Q, to wartosci f(z,) sa réwne 0, gdy x,, sa niewymierne, i réwne miano-
wnikom x,, gdy z, s wymierne. Poniewaz wartos¢ graniczna z jest niewymierna,
mianowniki te dgza do nieskonczonosci, co pokazuje, ze

Tim f(x,) = 0 = f(x).

Jesli natomiast x € Q, to f(z) # 0, i istnieje ciag liczb niewymiernych, np.
Tp, =z + £ zbiezny do x. Mamy wigc

Jim f(r,) = 0 # f(2)
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Pamietamy, ze kresy gorny i dolny zostaly zdefiniowane dla podzbioréw E C R
ograniczonych odpowiednio z géry i z dohu. Wygodnie bedzie rozszerzy¢ zwiazana
z tym notacje, tak aby obja¢ nia takze zbiory nieograniczone. W zwiazku z tym
przyjmiemy nastepujaca definicje:

Je$li R D E # ) jest nieograniczony z géry, to bedziemy moéwié, ze £ ma kres
gérny niewlasciwy i pisa¢ sup F = oo. Analogicznie, jesli R D E # () jest
nieograniczony z dotu, to bedziemy méwi¢, ze E ma kres dolny niewlasciwy i
pisaé¢ inf E = —o0o. Definicja ta pozwoli nam na przyktad na pisanie sup £ < oo,
co jest oczywiscie rownowazne powiedzeniu, ze zbior E jest ograniczony od gory.
Podobnie fakt, ze zbiér E jest ograniczony od dotu mozemy wyrazi¢ kréotko, piszac
inf £ > —o0.

Méwimy, ze funkcja f: ) # D — R jest ograniczona z géry (odpowiednio
z dotu), jesli jej zbidr wartosci jest ograniczony z géry (odp. z dotu), tzn.

sup f(D) = sup f(x) < o0 (odp. inf f(D) = ingf(x) > —00).
xzeD x€

4.29. Twierdzenie. Funkcja ciggta na odcinku domknietym jest ograniczona i 0s-
1qgg9a swoje kresy.

Dowéd. Przypusémy, ze

f:la,b) — R
jest ciagla i nieograniczona. Wtedy istnieje ciag {x,} C [a, b] taki, ze
(4.30) |f(zn)] == 0.

Poniewaz {x,} ograniczony, wiec na mocy twierdzenia Bolzano-Weierstrassa ist-
nieje podciag {z,, }ren zbiezny do pewnego xy. Skoro

VkeN a<xz, <b,

to réwniez a < xo < b, tzn. xy nalezy do dziedziny f, i wobec ciaggtosci f

Fn) 22 fao),

co przeczy (4.30).
Pozostaje dowies¢, ze f przyjmuje wartos¢ najwieksza i najmniejszg. Niech

a= inf f(z).

z€[a,b]
7 definicji kresu wynika, ze
ok €] flan) = a
Podobnie jak poprzednio wybieramy podciag {z,, } zbiezny do pewnego zy € [a, b].
Wtedy
f () == a,

a z cigglosci funkeji f w punkcie x

F(@ny) 272 f(ao),
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skad a = f(z¢). Analogicznie pokazujemy, ze istnieje 1 € [a, b] takie, ze

fa1) = sup f(x),

z€[a,b]

co konczy dowéd. O

4.31. Twierdzenie (Darboux). Jesli f: [a,b] — R jest ciggta oraz

fla) <y < f(b),
to istnieje ¢ € (a,b), takie Ze f(c) =y.

Dowdéd. Niech
E={x€[a,b]: f(x) <y}
Skoro a € Eib¢ E, wiec ) # E C [a,b]. Jesli przyjmiemy, ze

c=supFl,

to a < ¢ < b oraz
7 ciagtosci funkcji f
a poniewaz

wiec
(4.32) fle) <.
Wybierzmy z odcinka [a, b] ciag zbiezny do ¢ od géry, np.
Zn = c+(b—c)/n == ¢,
a wtedy
(VneN z,¢E) = (VneN f(z)>y) = flo>y

i wobec (4.32)

fle) =y,

co pokazuje teze. O

Oczywiscie twierdzenie Darboux pozostaje prawdziwe, gdy f(b) < y < f(a).
Niech bowiem g = —f i z = —y. Wtedy g(a) < z < g(b) i istnieje a < ¢ < b, takie
ze g(c) = z, czyli f(c) =y.

4.33. Wniosek. Obrazem odcinka domknietego przez funkcje cigglq jest odcinek
domkniety. Doktadniej, jesli
f:la,b) — R
jest ciggta, to
f(la,b]) = | min f(z), max f(z)].

x€[a,b] x€(a,b]
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Dowéd. Na mocy Twierdzenia 4.29 funkcja f jest ograniczona i osigga swoje

kresy, czyli
inf f(z) = min f(z) = f(x1)

z€|a,b| z€[a,b]
oraz

sup f(z) = max f(z) = f(z2)
z€[a,b] z€[a,b]

dla pewnych z1, 25 € [a,b]. Oczywiscie
(4.34) F(la,0]) € [f(z), f(x2)].
Na mocy twierdzenia Darboux
Vye (flz1), f(x2)) Je € (v1,72)  fle) =y,

tzn.

[ f(z1), f(z2)] € f([a,0]),
co wobec (4.34) daje teze. O

4.35. Wniosek. Jesls
f: (CL, b) — R

jest ciggta i roznowarto$ciowa, to jest scisle monotoniczna.

Dowdéd. Zalézmy nie wprost, ze f nie jest monotoniczna, tzn. istniejg
(4.36) a<x < Ty < a3 <D,
takie ze
f(z1) < f(z2) i flx2) > f(a3),
albo
f(z1) > f(z2) i fx2) < f(a3).

Bez zmniejszania ogdlnosci zalézmy, ze zachodzi pierwsza z koniunkcji. Wtedy

Jy oy e (flx), flx2)) N (f(xs), f(z2)),
skad, na mocy twierdzenia Darboux,
da € (21,22)  fla)=y
oraz
Jcy € (29, 73) fle2) =,

co wobec (4.36) oznacza, ze ¢; # ¢y 1 tym smym jest sprzeczne z zaloZeniem

roznowartosciowosci funkcji f. O

I jeszcze jeden wniosek z twierdzenia Darboux.

4.37. Whniosek (o punkcie statym). Niech f : [a,b] — [a,b] bedzie ciggla. Istnieje

c € la,b], takie ze f(c) = c.
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Dowdéd. Rozwazmy funkcje g : [a,b] — R zadana wzorem g(x) = = — f(x).
Chcemy pokazaé, ze g ma miejsce zerowe. Oczywiscie, g(a) < 0g(b), wiec albo
ktorys z punktéw a, b jest miejscem zerowym, albo

g(a) <0 < g(b)

i wtedy na mocy wtasno$ci Darboux istnieje ¢ € (a, b), takie ze g(c) = 0, bo przeciez
g jest funkcja ciagla. Ale skoro tak, to f(c) = ¢, a o to nam przeciez chodzito. O

4.38. Twierdzenie. Jesl

fila, 0] — [e,d]
jest ciggtq bijekcyq, to

' le,d] — [a,b]

jest rowniez ciggta.

Dowdéd. Wezmy dowolny ciag {y,} C [c, d] zbiezny do pewnego y € [c, d]. Skoro
{f ()} C [a,b],

to na mocy twierdzenia Bolzano-Weierstrassa mozemy wybraé podciag zbiezny

P ) =
7 ciaglosci funkcji f
PO ) ) = f (@),
a poniewaz
FOF W) =, —y,

wige y = f(z), ezyli z = f~1(y).
Skoro, jak pokazaliSmy, dowolny podciag zbiezny ciggu ograniczonego {f~!(y,)}
jest zbiezny do tej samej liczby f~1(y), to na mocy Twierdzenia 2.50

= ) — W),

co oznacza, ze funkcja f~! jest ciagla. O

PodaliSmy juz w obu wersjach, Heinego i Cauchy’ego, precyzyjne definicje granicy
liczbowej w punkcie oraz granic jednostronnych liczbowych w punkcie. W podobny
sposob formutuje sie definicje granicy liczbowej w +o00 i w —oo. I tak, dla funkcji
f o dziedzinie D O (—o0, a), gdzie a € R, mamy

lim f(z) =«

— V{z,}CD (z,—= —00 = f(z,) —> )
< Ve>0 dJK<a V<K |f(z) —al] <e.

Obok granic liczbowych (czyli wlasciwych) mamy jeszcze odpowiadajace im granice
niewtasciwe. Dobrze by byto, gdyby Czytelnik sprobowat sam sformutowaé odpo-
wiednie definicje. My ograniczymy sie do ponizszych przyktadéw:
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Granica niewtasciwa w punkcie skonczonym:

lim f(z) = —o0

T—x0

—  V{z,} (xnﬂxo = f(xn)ﬂ—oo)

— VK<0 306>0 (lr—z|/<d = [fl2)<K).
Granica lewostronna niewtasciwa w punkcie skonczonym:

lim f(x) =00

r—xro—

— V{z,} C (a,x0) (xnﬂxo = f(xn)mmx))

= VYM>0 Fzy<z (mi<z<z = f(z)>M).
Granica niewlasciwa w nieskonczonosci:

lim f(z) = —o0

— VK<0 IM>0 Ve>M  f(z)<K.

Na zakonczenie tego rozdzialu oméwimy jeszcze funkcje addytywne, podaddyty-
wne i lipschitzowskie. Przypomnijmy, ze funkcja f : D — R spelniajaca warunek

flea+ty)=f@)+fly), zyz+yeD,
nazywa sic addytywna.
4.39. Twierdzenie. Jezeli f : R — R jest funkcjg ciggla 1 addytywng, to istnieje

stata c € R, taka ze
f(z) = cz, z € R.

Dowdé6d. Rozumujac indukeyjnie, tatwo pokazaé, ze dla kazdego x € R i kazdego

n € N jest f(nz) = nf(z). Z addytywnosci wynika tez, ze f(0) = 0. Z tych dwéch
warunkéw mamy f(nz) = nf(z) dla x € R, n € Z, wiec, podstawiajac v = L,

otrzymujemy "
m 1
1G)=m )
n n

a w szczegolnosci dla m =n

(2) =,
skad nastepnie
()~ () =20

Ktadac ¢ = f(1), mamy
f(x) = cx, r € Q.
Aby zakonczyé dowdd, wystarczy skorzystaé z Lematu 4.24. O
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Funkcja f : D — R spelniajaca warunek

flet+y) < fl@)+ fly), xya+yeD,
nazywa si¢ podaddytywna.

4.40. Przyktad. Niech f(z) = |z|*, gdzie 0 < a < 1, dla x € R. Ta funkcja jest
podaddytywna, co wynika z nier6wnosci (3.7). Rzeczywiscie,
fle+y)=lz+y|" < (lz| + |y)®
< [ + [yl = f(2) + f(y)
dla z,y € R.

441. Uwaga. Jedli f: R — [0,00) jest parzysta funkcja podaddytywna, to

[f@) = fWl < fle—y), xyeR
Faktycznie,
f@)=fly+@—y) < fly)+ flz—y),
wiec
flo)=fly) < fle—y),  fly) = fle) < fly—=),
dla z,y € R, a stad juz natychmiast wynika teza.

Méwimy, ze funkcja f : I — R speinia warunek Lipschitza ze stalag C' > 0,
jesli
|f(x) — fly)] < Clz —y|, x,y €1

4.42. Przyklad. a) Taka funkcja jest np. sin : R — [—1, 1]. Rzeczywiscie,

. : Ty Tty
sinx — siny = 2sin 5 coS 5

wiec

|sinz — siny| < Z‘Sinx_y‘ < |z —yl.
Stata Lipschitza wynosi C' = 1.
b) Niech teraz f:[1,00) — R dezie zadana wzorem f(x) = 1/z. Mamy
Y-
1@ == |5 =] = [

wiec [ jest takze lipschitzowska ze stalq C=1.

yl,

¢) Funkcja wyktadnicza (—oo,a] 3 x — € € R spelnia warunek Lipschitza.
Istotnie, jesli x > vy,

et —e¥ =e"(1—eV ") <e"(x—y) <e(z—vy),
gdyz e* > 14 z dla 2 =y — x € R. Wobec tego

le® —e?| <elx — 1y, z,y < a.
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Tutaj C' = e°.

d) Mamy tez
o] = lyl| < |o =y,

wiec i funkcja x +— |z| jest lipschitzowska ze stala 1.

4.43. Twierdzenie. Funkcja f : I — R spetniajgca warunek Lipschitza jest ciggta
w kazdym punkcie.

Dowdd. Rzeczywiscie, jesli I 3 x, — x9 € I, to
|f(zn) — f(z0)| < Cl2n — 30] — 0,
wiec lim f(x) = f(zg). O

Tr—T0

Niech bedzie dana funkcja f : I — R. Warunek Lipschitza mozna wyrazi¢ tez
tak: Istnieje stalta C' > 0, taka ze dla wszelkich xz,y € I, x # v,

fx) — f(y)
r—Yy
Innymi stowy, funkcja lipschitzowska, to funkcja o ograniczonych ilorazach rézni-

cowych, a optymalng stala Lipschitza jest
fx) — f(y) ‘
r—y |

<C.

C = sup
TFY

4.44. Przyklad. Wroémy do funkcji z Przyktadu 4.40. Jest ona lipschitzowska na
przedziale [1,00). Rzeczywiscie, jeSi 0 <a <1il1l <y <z, to

¢ — ya _ xo‘_l(a: o y) + y(xa—l o ya—l)’
gdzie drugi sktadnik sumy po prawej jest juz niedodatni. Zatem

|Ia_ya|§|x_y|v %921

4.45. Przyklad. Rozwazmy jeszcze funkcje f(z) = z® dla o > 1. Pokazemy, ze
jest ona lipschitzowska na przedziale [0, 1]. Niech 0 <y < x < 1. Jedli 2y < z, to

o =yt <a® < 2x —y)* <2z —vy),
wiec pozostaje rozpatrzy¢ przypadek 2y > x. Wtedy

T — oy = $a(1 . ealog%)

< az®log L < ax®
z Yy
S 2aa($ - y)7

co dowodzi naszej tezy.



5. SZEREGI

Niech bedzie dany nieskonczony ciag liczbowy {ax}72 . Ciag

Anzzak

k=1
nazywamy ciggiem sum cze$ciowych ciagu {a;}. Jezeli ciag {A,} jest zbiezny,
mowimy, ze ciag {ax} jest sumowalny, a granice
A= lim A,

n—oo

nazywamy jego sumg i oznaczamy przez A =~ aj. Tak wiec z definicji

n

o

E ar = lim E ag,
n—oo

k=1 k=1

o ile ciag {ax} jest sumowalny.
Tradycyjna terminologia jest troche inna. Za pomoca symbolu

Zak:a1+a2+a3+...
k=1

oznacza sie nie tylko sume ciagu {ax}, gdy jest on sumowalny. Uzywa sie go
takze w przypadku ciggéw niesumowalnych dla zaznaczenia samej intencji badania
sumowalnosci ciagu. I tak zamiast cigg {ax} jest sumowalny badz niesumowalny
moéwi sie szereg -, ai, jest zbiezny badz rozbiezny, a zamiast suma nieskoriczone-
go ciggu {ax} méwi si¢ suma szerequ » ;. , aj. Podobnie sformulowanie dany jest
szereq Y o, a wyraza to samo, co dany jest cigg {ax}32,, a my bedziemy starali
sie rozstrzygnaqc, czy jest on sumowalny 1 ewentualnie obliczyé jego sume.

Terminologia ta moze wydawaé sie nieprecyzyjna, ale jest tak wygodna i tak
powszechnie stosowana, ze warto przy niej pozosta¢. W chwilach pomieszania, ktore
czesto zdarzaja sie adeptom analizy, mozna zawsze siegnaé¢ do Scistych definicji
podanych wyzej.

Badanie zbieznosci szeregéow jest w istocie badaniem zbieznosci ciaggéw specjalne-
go typu. Czytelnik przypomina sobie, ze tego typu ciagi wystepowaly juz weczesnie]
w naszych rozwazaniach. Oto przyktady szeregéw zbieznych:

(1) " =lim, oo >op o ¢" = 1_£q’ oile |g| <1,

(3) 0, 2 = lim, oo Y4y & = e dlax € R,

_l)kJrl _1)k+1

(4) >op2, SH— =lim, oo 3o, S — = log2,
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(5) 225 % — log(1 + %) = limy o0 3 1y % — log(1 + %) =7
Wiemy réwniez, ze nastepujace szeregi sa rozbiezne:

(1) 22021 % = lim;, oo ZZ:1 % — 00,

(2) 2520 q" =limp oo 3520 ¢" dla g > 1,

(3) 2ohto(—1)F = Timy e 375 (—1)F,

Ten ostatni szereg jest rozbiezny, bo jego sumy czeSciowe A, = 1+(;1)" nie maja
granicy. Zwroé¢my uwage, ze tradycyjna terminologia zmusilta nas przed chwilg do

napisania symbolu granicy przed ciggami rozbieznymi. Taka juz jest jej uroda!

Wiemy, ze cigg zbiezny jest ograniczony. Dla szeregu oznacza to:
5.1. Fakt. Cigg sum czeSciowych szerequ zbieznego jest ograniczony.

Zwréémy uwage, ze szereg (3) z wyzej wymienionych szeregdéw rozbieznych ma
ograniczone sumy czesciowe.

5.2. Fakt. Szereg ) ., ai o wyrazach nieujemnych jest zbieiny, wtedy i tylko wtedy
gdy cigg {An} jego sum czeSciowych jest ograniczony.

Dowéd. Rzeczywiscie ap > 0 pociaga A, > A,. Skoro cigg sum czeSciowych
jest rosnacy, jego zbieznosé jest rownowazna ograniczonosci. O

Jezeli szereg Y .- | a; ma wyrazy nieujemne, to w mysl powyzszego faktu ciag
jego sum czesciowych jest zbiezny lub rozbiezny do nieskoniczonosci. Dlatego be-

dziemy pisaé
o0
E arp < 00,
k=1

aby krétko wyrazi¢ zbieznos¢ takiego szeregu, lub

E ap = OQ,

k=1

aby zaznaczy¢ jego rozbiezno$c¢. Notacji tej nie wolno stosowaé do szeregéow o
wyrazach niekoniecznie nieujemnych.

5.3. Fakt. Jesli szereg Y -, ay jest zbiezny, to limy_, ay = 0.

Dowéd. Mamy
an:An_Anflv n227

gdzie A,, oznacza n-ta sume czesciows, skad natychmiast wynika teza. O
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Nie nalezy jednak sadzi¢, ze warunek ap — 0 jest wystarczajacy dla zbieznosci
szeregu. Swiadezy o tym chocby szereg (1) z umieszczonej wyzej listy szeregéw
rozbieznych.

Ostatni dowdéd nasuwa pewne wazne spostrzezenie. PowiedzieliSmy wczesniej, ze
szeregi to ciggi specjalnego typu. Nie jest to catkiem $ciste, bo sugeruje jakoby
szeregi stanowily pewna wtasciwg podklase klasy wszystkich ciagéw. Tymczasem
nietrudno zauwazy¢, ze kazdy ciag mozna przedstawi¢ w postaci szeregu, ktadac

n n

Ap+1 = Z(akJrl - ak) = Za;“’

k=0 k=0

gdzie ag = 0. Krétko méwiac, kazdy ciag {ay1} jest ciagiem sum cze$ciowych ciagu
spochodnych” {a} }. Lepiej wiec powiedzie¢, ze badanie szeregéw to badanie ciagéw
jako ciagéw sum czeSciowych. Réznica polega na tym, ze tu zalozenia formuluje
sie w terminach ciagu {a} }, a nie samego ciagu {ay}.

5.4. Fakt. Jezeli szereqg A = o | ay, jest zbieiny, to zbieiny jest tez kazdy z sze-
regow

Rn = Z ag,
k=n
a ponadto
lim R, =0

Dowdéd. Rzeczywiscie, jesli

to sumy czesciowe szeregu R, sa réwne

m

Rn(m) = Zak = Am - An—la

k=n
wiec R,(m) — A — A,_1, gdy m — oo. Zatem
lim R, = lim A— A, =0,

n—oo n—oo

co byto do okazania. O

5.5. Fakt. Szereg > /-, ai, jest zbiezny, wtedy i tylko wtedy gdy dla kazdego € > 0
isnieje N € N, takie ze
Z ak‘ <€

k=m+1
dlan >m> N.
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Dowdd. Jako ze

Z af = An - Ama
k=m+1
gdzie A, jest n-ta suma czeSciowa szeregu, rozpoznajemy warunek Cauchy’ego z
Twierdzenia 2.52, ktéry jest réwnowazny zbieznosci ciagu {4, }, a wiec zbieznosci
szeregu. O

5.6. Wniosek. Jesli szereq Y, |ax| jest zbieiny, to takze szereg Yy .- | ax jest
zbiezny, a ponadto

0o 00
D <D lail
k=1 k=1

Dowdd. Zbieznosé szeregu » .-, a wynika z nieréwnosci tréjkatas

n

> o

k=m-+1

n

< Z |a|

k=m+1

oraz z Faktu 5.5. JeSli w ostatniej nieréwnosci przyjmiemy m = 0, otrzymamy

nieréwnosé
n

[An] < Jaul,
k=1
a po przejsciu z n do nieskonczono$ci druga czesé tezy. O

Méwimy, ze szereg Y .-, ai jest bezwzglednie (albo absolutnie) zbiezny, jesli
zbiezny jest szereg > .- |ag|. Wyzej pokazaliSmy, ze szereg bezwzglednie zbiezny
jest zbiezny. Zwréémy uwage, ze szereg (4) z wyzej umieszczonej listy szeregéw
zbieznych nie jest bezwzglednie zbiezny. Taki szereg nazywamy warunkowo zbie-
ZNyIm.

5.7. Uwaga. Wiemy, ze zmiana skoniczonej iloSci wyrazéw w ciaggu nie ma wplywu
ani na jego zbieznos¢, ani na warto$¢ granicy, o ile ta istnieje. Troche inaczej
wyglada sprawa z szeregami. Zmiana skonczonej iloSci wyrazow w szeregu oznacza
dodanie pewnej statej do wszystkich wyrazow ciagu sum czeSciowych poczawszy
od pewnego miejsca. Nie wplywa zatem na zbieznosé¢ szeregu, ale moze wplynaé
na wartosé¢ jego sumy, gdy jest on zbiezny. W szczegdlnosci zbiezno$¢ szeregu

o

> a

k=N

dla jakiegokolwick N € N pociaga zbieznos¢ calego szeregu » - | ay.

Zajmijmy sie teraz szeregami o wyrazach nieujemnych. Oto tak zwane kryterium
porownawcze zbieznosci szeregdw.
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5.8. Fakt. Niech bedq dane dwa szeregi > ;- ag © Y pe b 0 wyrazach nieujem-
nych, takich ze ar, < by, dla dostatecznie duzych k. Wtedy zbieznosé szerequ > -, by
pociqga zbieznosé szerequ Y -, a, natomiast rozbieinosé szeregu Y - | ax pociqga
rozbieznosé szerequ Y - | by.

Dowdd. Rzeczywiscie, istnieje wtedy N € N, takie ze dla n > N mamy

wiec ograniczonosé szeregu o wyrazach by, pocigga ograniczonosé szeregu o wyrazach
aj i odwrotnie — nieograniczonosé¢ szeregu po lewej pociaga nieograniczonosé tego
po prawej. To na mocy Faktu 5.2 dowodzi naszej tezy. O

5.9. Przyklad. Zauwazmy, ze nieréwnosé
1 1

k;2<k:(k:—1)’ E>1,

wraz ze zbieznoscig szeregu » .-, ﬁ dowodzi na mocy kryterium poréwnaw-
czego, ze

=1

Z ﬁ < 0

k=1
Ponadto

o 1

2 =

Mozna jednak pokaza¢ wiecej. Mianowicie
27
k=n
a doktadniej
N |
nh_}rgo n Z =i 1.
k=n

W tym celu wystarczy zauwazy¢, ze dla kazdego k > 2
1 1 1

<= <.
K1) SRS (k- Dk

Sumujac wzgledem 2 < n < k < m, dostajemy

1 1 1

m




5. Szeregi 67

a stad juz nasza teza na mocy twierdzenia o trzech ciagach.
2 n
k=n

Poréwnujac wyrazy danego szerego z wyrazami szeregu geometrycznego, otrzy-
mujemy kryteria d’Alamberta i Cauchy’ego.

5.10. Twierdzenie. Niech bedzie dany szereg Y ;- | ai, 0 wyrazach dodatnich. Jezeli

. Ap+1
lim sup —— < 1,
k—o00 Qg
to szereg jest zbiezny. Jezeli natomiast
NP ¢ RS |
liminf —+ > 1,
k—o00 ag
to szereqg jest rozbiezny.
Ak+1

Dowdd. Niech limsupy ., =+ < 1. Oznacza to, ze istnieje liczba 0 < ¢ < 1,

taka ze dla dostatecznie duzych & > N mamy a(’“l—:l < q, skad

ag Qr—1 AN+1 E_N k
: cay < ¢ an = Cng",

ap = c.
ag—1 Q-2 an
gdzie Cy = ‘;—%. Zatem na mocy kryterium poréwnawczego szereg > .-, aj jest
zbiezny.

Jesli za$ liminf,_ a’;—:l > 1, to istnieje liczba ¢ > 1, taka ze dla dostatecznie
duzych k > N mamy %L > ¢, skad

ag

ar Q-1 aN+1 k—N

anN = Oquv

ay = ay > ¢

Qr—1 Qg—2 an

gdzie Cy = Z—%. Zatem na mocy kryterium poréwnawczego szereg > -, aj jest
rozbiezny. O

5.11. Uwaga. Kryteria d’Alamberta nie méwia nic w sytuacji, gdy

Qk+1 Qg1

lim sup >1 lub lim inf < 1.

k—oo Ok k—oo ay

Tak sie dzieje w przypadku szeregoéw
=1 =1
> Xz
k=1 k=1

W obu przypadkach mamy
. Ak41
lim

= 1,
k—oo A

a tymczasem pierwszy z tych szeregdw jest rozbiezny, a drugi zbiezny.
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5.12. Przyklad. Rozwazmy szeregi

iak = i (2:) 5% ibk = i (2:) 37*.

k=0 k=0 k=0 k=0
Mamy

A1 (zkkjﬁ)g)ikfl 1 2k +1)(2k+2) koo 4

a (5t 5 (k+1) 5
oraz

b1 (2:112)3%_1 1 2k+1)(2k+2) ko 4

b (D33 (k1) 3’

wiec pierwszy szereg jest zbiezny, a drugi rozbiezny. Przyktad ten dobrze ilustruje
ten wygodny fakt, ze w praktycznych zastosowaniach wyrazenie ““* czesto ma
granice.

Przechodzimy do kryteriéw Cauchy’ego.

5.13. Twierdzenie. Niech bedzie dany szereq > .-, ar 0 wyrazach nieujemnych.
Jezeli

lim sup Va;, < 1,

k—o0
to szereq jest zbiezny. Jezeli natomiast
limsup Va, > 1,

k—o0

to szereg jest rozbiezny.

Dowdd. Niech limsup,_,, /ar < 1. Oznacza to, ze istnieje liczba 0 < ¢ < 1,
taka ze dla dostatecznie duzych & > N jest {/a, < q, czyli a; < ¢*, wiec na mocy
kryterium poréwnawczego szereg » -, aj jest zbiezny.

Jesli zas limsup,_, ., /ar > 1, to istnieje liczba ¢ > 1, taka ze dla nieskonczenie
wielu k jest /ay, > ¢, czyli a,, > ¥, wiec ciag {ax} nie dazy do zera, a to na mocy
Faktu 5.3 oznacza, ze szereg > .-, aj jest rozbiezny. O

5.14. Uwaga. Podobnie jak kryteria d’Alamberta takze kryteria Cauchy’ego nie
mowia nic w sytuacji, gdy
lim sup /a, = 1.

k—oo

Mozna na poparcie tej tezy przytoczyé te same przyktady.

5.15. Uwaga. Mamy

. . pQa . . a
lim inf —+t < lim sup ax < limsup il

k—o0 ag k—oo k—o0 ag
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Druga nieréwnosé¢ pochodzi z Faktu 2.59, a pierwszej dowodzi sie analogicznie.
Wynika stad, ze jesli kryteria Cauchy’ego nie sa w stanie rozstrzygna¢ kwestii
zbieznosci szeregu, to i kryteria d’Alamberta zawodzg. Potocznie moéwi sie, ze
jesli szereg nie reaguje na kryteria Cauchy’ego, to nie reaguje takze na kryteria
d’Alamberta.

5.16. Przyklad. Niech bedzie dany ciag {ax} o wyrazach nieujemnych zbiezny
do a. Wtedy szereg >/~ a¥ jest zbiezny, jesli a < 1 i rozbiezny, jeéli a > 1. Niech

np.

gdzie 0 < € < 1. Na mocy Przyktadu 4.7
klim ar, =V1—¢e2<1,
—00

wiec, stosujac kryterium Cauchy’ego, widzimy, ze

2

5 (et e>1/k) <o

k=1

Rozpatrzmy jeszcze jeden przykiad.

5.17. Przyktad. Niech bedzie dany szereg o wyrazie ogélnym

34 (—1)*
A = Z—k
Jak wida¢
1k 4\1/k 4K
o< (5)" <7
wiec lim sup;,_, a,lc/k = 1/2. Stad
3+ (=1)"
ppEad =
k=0

W tym wypadku jednak lepiej skorzysta¢ wprost z poréwnania ze zbieznym szere-
giem geometrycznym:

4
akgﬁ

I jeszcze jedno kryterium badania zbieznosci szeregéw o wyrazach dodatnich
(nieujemnych), zwane kryterium Cauchy’ego o zageszczaniu.

5.18. Fakt. Niech {ay} bedzie ciggiem malejgeym liczb nieujemnych. Wowczas
szereg Y oo, ay jest zbiezny, wtedy i tylko wtedy gdy szereg > ;- 2k aqr jest zbiesny.
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Dowdd. Rzeczywiscie,

2N _1 N—-12nt1_1 N-1
Z Qap = Qp S 2"a2n
k=1 n=0 k=27 n=0
oraz
2N _1 N—-1 2nt1_1 N-1
Zakzz Z akZZ2 a2n+1——22 Qon,
k=1 n=0 k=2n n=0

bo wyrazéw ay, dla 2" < k < 27! jest 2" i na mocy naszych zalozen najmniejszym
jest agn+1_1 > agn+1, a najwiekszym agn. Z udowodnionych nieréwnosci wynika
teza. O

Co prawda wiemy juz, ze

k=1
a co za tym idzie
= 1
Z E < 00, o> 2,
k=1
oraz
>;
— OO7
k=1 k
i co za tym idzie
oo
L <1
- = 0Q, a )
(03
k=1 &

ale kryterium o zageszczaniu pozwala za jednym zamachem ,zgltebi¢” wszystkie te
przypadki, tacznie z tymi, ktérych jeszcze brakuje.

5.19. Wniosek. Szereg > -, k% jest zbiezny, wtedy tylko wtedy gdy o > 1.

Dowéd. Rzeczywiscie, jedli a; = =, to

koo

22 a2k—22ak qu’
k=1

a ostatni szereg, ktéry jest szeregiem geometrycznym o ilorazie ¢ = 272, jest
zbiezny dokltadnie wtedy, gdy o > 1. O

A oto interesujace uogélnienie Przykltadu 5.9.
5.20. Fakt. Dla kazdego o > 0

lim n® = —.
n—00 kl—l—a Q
k=n
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Dowéd. Rozwazmy ciag ap = 7. Mamy

1 1 1 k+ 1
dy=—— = —(1—exp(—al .
T ke Tkt 1) ka( exp (— arlog = >)

Stosujac nieréwnoéé 1 — e~1#l < ||, dostajemy

Z drugiej strony

k%(l—exp(—alogk_]zl)) :%log(l-F%) +%r2(alog <1+%)>,

gdzie |ry(z)| < 22, wiee

1 ostatecznie

[e.9]

Jako ze

widzimy, ze

ne 2«

=1
1<a-n” < .
san ;wa— -1 (n—De(n—2)

Drugi sktadnik po prawej dazy do zera, wiec nasza teza jest konsekwencja twier-
dzenia o trzech ciagach. O

Nawiasem moéwiac, przez nieznaczng modyfikacje przedstawionego przed chwilg
rozumowania mozna otrzymac¢ inny dowdéd Wniosku 5.19. Szczegoly pozostawiamy
dociekliwemu Czytelnikowi do samodzielnego uzupetnienia.

Tyle na razie na temat szeregéw o wyrazach nieujemnych. Przechodzimy do
szeregow o wyrazach dowolnych. Jezeli taki szereg jest zbiezny bezwzglednie, to w
zasadzie jego badanie sprowadza sie do badania szeregu wartosci bezwzglednych,
ktory ma wyrazy nieujemne. Jesli jednak jest zbiezny tylko warunkowo, sprawa jest
znacznie delikatniejsza.
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5.21. Twierdzenie (Leibniz). Jesli cigg {ax} maleje monotonicznie do zera, to

szereq
> _(D'ax

k=0
jest zbiezny.
Dowdéd. Widzimy, ze parzyste sumy czeSciowe
Agp = (ap — a1) + (az —ag) + -+ + (agn—2 — a2n—1) + ag, > 0
sg ograniczone z dohu i tworza ciag malejacy, bo
Agny2 — Azp = @242 — a2p41 <0,
natomiast sumy nieparzyste
Agny1 = ag + (a2 — ay) + (ag — az) + ... (a2 — a2n11) < g

sg ograniczone z gory i tworza ciag rosnacy, bo

Agnyz — Aony1 = Aony2 — Aonyz > 0.
Tak wiec oba podciagi {Ag2,} i {A2n11} sa zbiezne i wobec

Agp — Agny1 = agpp1 — 0

maja wspolnag granice. Stad ciag sum czesciowych jest zbiezny. O

Oprécez znanego nam juz dobrze szeregu anharmonicznego

=, (—1)k

k=1

dobrymi przyktadami na twierdzenie Leibniza sa szeregi

i(—l)ml log (1 + %), i(_l)k+1 (e B (1 N %)k>

k=1 k=1
Rzeczywiscie ciagi
1
E7

sa monotonicznie zbiezne do zera.

1 1\*
ap = bk:10g<1+g>, Ck:€—<1+—>

5.22. Lemat. Niech bedq dane dwa ciqgi nieskoriczone {ay} i {bx}. Dla dowolnych
m < n naturalnych zachodzi nastepujgca tozsamosé Abela:

n n
/ /
§ a'k:bk = (an—i-lbn—i—l - a'mbm) - § ak;bk’-i-la
k=m

k=m

gdzie, przypomnigmy, a) = Q41 — Q.
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Dowdd. Wystarczy zauwazyé, ze

n

Z(akbk)/ = an+lbn+1 - ambma

k=m
a ponadto
(akbk)' = a;bkﬂ + akb;,

co daje teze. O

Za pomocya tozsamosci Abela udowodnimy bardzo wazna nieréwnosé Abela, kto-
r3 bedziemy nastepnie wielokrotnie wykorzystywaé przy badaniu rozmaitych sze-
regow.

5.23. Twierdzenie. Zaldzmy, Ze cigg liczb nieujemnych {ay} jest monotoniczny,
natomiast ciqg {bx} ma ograniczone sumy czesciowe

Bn = i bku
k=1

co oznacza, zZe istnieje B > 0, taka Ze |B,| < [ dla kazdego n. Wtedy

‘ Z akbk‘ < 26 max{an,, ani1}-
k=m

Dowdéd. Na mocy tozsamosci Abela

Z agby = Z akBllc—l
k=m k=m
= (an+1Bn — amBm_1) — Z CL;CBk;,

k=m

wiec

‘ Z akbk‘ < Blant1 + am + Z |aj|)
k=m k=m

= B(anJrl + ap + ‘anJrl - ij‘),
bo ciag {ax} jest monotoniczny. Rozpatrujac osobno przypadki a,y1 < a,, gdy
ciag jest malejacy, i a,, < a,11, gdy ciag jest rosnacy, dostajemy teze. O

Nastepujace kryterium Abela mozna uwazaé za uogdlnienie podanego wyzej kry-
terium Leibniza.

5.24. Twierdzenie. Jezeli {ay} jest ciqgiem malejacym do zera, a cigg sum czes-
ciowych ciggu {by} jest ograniczony, to szereg > ;- | agby jest zbieziny.
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Dowd6d. Na mocy nierownosci Abela
’ Z akbk‘ < 2Bay,
k=m

gdzie

6= sup‘Zbk‘.
k=1

neN

Jesli m jest dostatecznie duze, sumy posrednie sa mate, bo a,, — 0. To za$ na mocy
Faktu 5.5 oznacza, ze szereg > -, aiby jest zbiezny. O

Warto zatrzymac sie na chwile, aby lepiej zrozumie¢ kryterium Abela. Przyktad,
ktory chcemy teraz zaprezentowad, wymaga pewnych przygotowan. Zacznijmy od
nastepujacego lematu.

5.25. Lemat. Cigg b, = sinn nie jest zbiezny do zera.

Dowd6d. Pokazemy, ze jest rzecza niemozliwa, aby prawie wszystkie wyrazy
naszego ciggu lezalty w przedziale (—1/2,1/2). Przypusémy nie wprost, ze

|sinn| < 1/2, n > N.

Wtedy dla takich n

3
|cosn| =1 —sin*n > £

2 )
wiec
|sinn| ) sin 2n ) - 1
sinn| = .
2cosn 23
Powtarzajac to rozumowanie, pokazujemy, ze
) 1
|sinn| <

2(V3)y

dla kazdego p € N, co pociaga sinn = 0 dla n > N. To jednak jest absurdem, bo
7 jest liczbg niewymierng. O

Z lematu wynika, ze szereg » -, sink jest rozbiezny. Okazuje si¢ jednak, ze jego
sumy czesciowe sa ograniczone.

5.26. Fakt. Dla kazdego x nie bedgcego wielokrotno$cig

L sin 2z - sin g
E sin kx = — .
sin £
k=1 2
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Dowdéd. Gdy n = 1 nasza tozsamos¢ jest oczywista. Zalézmy, ze jest ona
prawdziwa dla pewnego n € N. Wtedy
+1 . .
- . " ' sin 2z - sin “He
E sin kx = g sinkx 4+ sin(n + 1)x = — + sin(n + 1)z,
sin £
k=1 k=1 2
pozostaje wiec dowies¢ rownosci
sin §x - sin "THx ) sin ”THx - sin ”T”x
— +sin(n+ 1)z = — ,
Sin b} Sin bl

co jest prostym ¢wiczeniem z trygonometrii. O

5.27. Przyklad. Niech {a;} bedzie ciagiem malejacym do zera i niech by = sin k.
Z Faktu 5.26 wynika, ze dla kazdego n

n o
sin § - sin %3

‘ E bk‘ S‘ 1 ‘S 10

p sin 5 | sin 3|

wiec sumy czedciowe ciagu {by} sa ograniczone. Na mocy twierdzenia Abela szereg

(o]
E asin k
k=1

jest wiec zbiezny.

Do$¢ podobnym do kryterium Abela jest kryterium Dirichleta. O ile jednak to
pierwsze kojarzy sie z warunkiem Leibniza, na to drugie dobrze jest spojrze¢ w
kontekscie nastepujacego prostego przyktadu.

Jesli szereg Y o | by jest zbiezny bezwzglednie, a ciag {ay} jest ograniczony, to

00
Z \akbk\ < 00,
k=1

co nietrudno wywnioskowaé z kryterium porownawczego. Innymi stowy, wyrazy sze-
regu bezwzglednie zbieznego mozna pomnozy¢ przez wyrazy ciagu ograniczonego,
a otrzymany szereg bedzie nadal zbiezny bezwzglednie. Tak oczywiscie nie jest dla
szeregow warunkowo zbieznych. Aby sie o tym przekonaé, wystarczy wyrazy szeregu
anharmonicznego pomnozy¢ przez ograniczony ciag (—1)%1. Tym bardziej godne
uwagi jest nastepujace twierdzenie Dirichleta, ktore mowi, ze mozna to zrobic, jesli
ciag {ax} jest monotoniczny.

5.28. Twierdzenie. Niech ), _, by bedzie szeregiem zbieznym, a {ay} ogranic-
zonym ciggiem monotonicznym. Wtedy szereg > - | agby, jest zbiezny.

Dowdd. Niech
P
——|

pzm k=m
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Poniewaz szereg ten jest zbiezny, z Faktu 5.4 wynika, ze 3,, — 0, gdy m — oc.
Niech ponadto |ax| < . Z nieréwnosci Abela zastosowanej do ciagéw {ax}32,, i
{br}%2,, wynika, ze

) Z akbk’ < 206,
k=m

co oznacza, ze dla duzych m sumy poSrednie szeregu » .-, ayby sa male, a wiec
jest on zbiezny. O

5.29. Przyklad. Jesli ciag {a;} maleje do zera, a ciag {b} jest rosnacy i ogranic-
zony, to szereg

Z(_l)k+1akbk

00
k=1

jest zbiezny. Istotnie, szereg Y oo (—1)*"a; jest zbiezny na mocy twierdzenia Lei-

bniza, wiec wolno go pomnozy¢ przez wyrazy ciagu rosnacego i ograniczonego bez
utraty zbiezno$ci.

Na tym konczymy wstepne oméwienie szeregéw zbieznych warunkowo. Do konca
rozdzialu pozostaja nam jeszcze iloczyny Cauchy’ego i zagadnienie permutacji
wyrazow w szeregu zbieznym.

Niech beda dane dwa ciagi {ax}i2, 1 {bx}72,- Iloczynem Cauchy’ego takich
ciggoéw nazywamy ciag o wyrazach ¢, = a; * by zdefiniowany nastepujaco:

n
Cp = g arbn,_i.
k=0

Zauwazmy od razu, ze iloczyn Cauchy’ego jest przemienny, tzn.
ay x by, = by % ag,
i rozdzielny wzgledem dodawania ciggow:
ag * (b + di) = ag x by, + ag * dy,

co sie tatwo i przyjemnie sprawdza. Mamy tez

(5.30) |+ b | < I; [an-ikbe| < max fay| - ’; b

5.31. Lemat. Jesli cigg Ay, — A i)y 1o |bk] =3 < 00, to

lim A, b, :AZbk.

n—00
k=0

Dowo6d. Niech
B,=) b, B=)> by
k=0
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Ciag {A,} jako zbiezny jest ograniczony, wiec niech |A, | < a. Niech bedzie ¢ > 0.
Istnieje N € N, takie ze

[An—Ax| <e, ) |kl <e
=N

dla n > N. Przy tych oznaczeniach mamy

A, AB—ZAknk—ZAbnk
kNO =
Z Ak: - n bn—k+ Z (Ak: _An)bn—ka
k=0

k=N+1
wiec dla duzych N in > 2N na mocy (5.30)

Ak by = Ay By < | EN:(Ak — Au)bu | + | Xn: (Ar = Au)bo |
k=0

k=N+1

0<k<N

< max |Ap — A, Z |bk| + Anax | Ay — Ayl Z ||
=N N =

< 2ae + fe.

Zatem
lim A, *b, = lim A,B, = AB,

n—oo n—oo

tak jak chcielismy. O

5.32. Twierdzenie (o iloczynach Cauchy’ego). Jesli szereg > -, ai jest zbiezny,
a szereg y - o by jest zbiezny bezwzglednie, to szereg > -, aj * by, jest tez zbiezny i
zachodzi rownosé

Zak*bk Zak Zbk
k=0 k=0

Dowéd. Niech ¢, = a, x b, i niech A, oznaczaja sumy czeSciowe pierwszego
szeregu, A zas$ i B sumy dwdéch pierwszych. Jak tatwo sie przekonad

C,= A, *by,
wiec na mocy Lematu 5.31 ciag {C),} ma granice réwna AB, co jest nasza teza. O

Podamy najpierw przyktad pozytywny, a po nim negatywny.

5.33. Przyklad. Wiemy, ze szereg

Z=Zq: %q gl <1,
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jest bezwzglednie zbiezny. Mamy
Ay * Ay, = qunk (n+1)¢"

wiec na mocy Twierdzenia 5.32

o0

S0+ 1)gt =

—_ )2’
— (1—q)

a stad

— (1-q)

=

5.34. Przyklad. Niech teraz a; = E/ll Szereg > /-, ai jest zbiezny warunkowo.

Mamy
n+1 1
Ap * A = ( ,
Y e o v
wiec
n+1
2
|an * an| > v2 > V2,
k:1n+1
bo ,
1
k(n+1—k)§%, 1<k<n.

Zatem szereg iloczynéw Cauchy’ego jest rozbiezny, gdyz jego wyraz ogdlny nie
dazy do zera. Widzimy, ze zalozenie o absolutnej zbieznoSci przynajmniej jednego
z szeregbw w Twierdzeniu 5.32 jest istotne.

Wiemy, ze w szeregu mozna bezkarnie przestawi¢ skonczong liczbe wyrazéw,
nie tracac zbieznosci, ani nie zmieniajac jego sumy. Czy wolno jednak dokonaé
nieskoniczonej permutacji wyrazow? Tak, jesli szereg jest absolutnie zbiezny.

5.35. Twierdzenie. Niech ) .-, |ay| < co. Wiwczas dla kazdej permutacyi
c:N—=N

oo . t ’ .. b . .
szereq Y oo Go(k) Jjest rowniez zbiezny i

Zaa(k) = Zak < 00.
k=1 k=1
Dowo6d. Niech
An=) ar,  Su = o
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i niech
o
E ar = A= lim A,.
n—oo
k=1

Zauwazmy najpierw, ze dla kazdego n istnieje minimalne M,,, takie ze

(1,2,...,n} c(;<{1,2,...Mn}),

bo permutacja o jest surjekcja.
Dla € > 0 niech N bedzie takie, by

o0

A—An[ < ) al <.

k=N+1
Wtedy dlam > M = My

[e.9]

|Sm—AN| < Z |ak] <g,

k=N+1
wiec

S — Al < |Sm — An| + [Ay — Al <2 Y Jax| < 2¢,
k=N+1
co dowodzi naszej tezy. O

5.36. Wniosek. Przy zalozeniach i oznaczeniach Twierdzenia 5.35 mamy
Z |CLU(k)| < 0Q.
k=1

Dowdéd. Wystarczy zastosowaé Twierdzenie 5.35 do szeregu wartosci bezwzgled-
nych, by otrzymaé¢ zadang zbieznos¢. 0O

Oto przyktad pokazujacy, ze permutacja wyrazéow szeregu warunkowo zbieznego
moze zmienic¢ jego sume.

5.37. Przyklad. Niech
k=1

bedzie suma czeSciowa warunkowo zbieznego szeregu anharmonicznego. Przez in-
dukcje sprawdzamy, ze

2n n
1 1 1
Sin + = Son = -y

Niech
iu—1+1—1+1+1—1+
oA R T T T
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bedzie szeregiem. ktéry jest permutacja szeregu anharmonicznego. Permutacja
polega na tym, ze po dwoch kolejnych wyrazach nieparzystych nastepuje jeden
kolejny parzysty. Niech U,, bedzie suma czeSciowa tego szeregu. Widac, ze

1
U3n = S4n + 55271 = U3n7
wiec
) 3
lim Us,, = ilog 2.
Zauwazamy takze, ze

Uspt1 — Us, — 0, Uspy2 — Uz, — 0,

wiec szereg ten jest zbiezny, a jego suma wynosi %log 2.

Permutacja wyrazéw szeregu warunkowo zbieznego moze takze zniweczy¢ jego
zbieznos¢.

5.38. Przyklad. Niech {n;} bedzie ciagiem liczb naturalnych dobranym tak, aby
ng = 1 oraz

nk+1—1
1
g . > 1
: 27 +1
Jj=ng

Rozwazmy nastepujaca permutacje wyrazow szeregu anharmonicznego: Najpierw
nastepuje n; kolejnych wyrazéw nieparzystych, po nich pierwszy wyraz parzysty;
potem znéw no, wyrazéw nieparzystych, drugi parzysty itd. Niech S, bedzie suma
czeSciowy tej permutacji szeregu anharmonicznego. Jak widac

k

Snk+1 > 57

wiec nowy szereg jest rozbiezny.

Okazuje sie, ze przez odpowiednig permutacje wyrazéw szeregu warunkowo zbiez-
nego mozna uzyska¢ ,wszystko”— rozbiezno$¢ lub zbieznos¢ do z géry wybranej
sumy. Méwi o tym nastepujace twierdzenie, ktorego dowdd pominiemy.

5.39. Twierdzenie (Riemann). Niech Y /-, ay bedzie szeregiem warunkowo zbiez-
nym. Dla kazdego o € R istnieje permutacja wyrazow szerequ o, taka Ze sumy
czesciowe

n

Sn = Z Ao (k)

k=1

sq zbiezne do a. Mozna tez dobraé o tak, by cigg sum czeSciowych byt rozbiezny do
+o00 lub tez nie miat nawet granicy niewtasciwe;.
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Niech bedzie dany ciag { i }5—o liczb rzeczywistych. Przez zbiezno$¢ szeregu
powdjnego

(5.40) D)

n=0 k=0

bedziemy rozumieé¢ zbieznos$c szeregdw

00
E An7 An - E O k-
n=0 k=0

Jesli oy, ) > 0, to nietrudno zauwazy¢, ze zbieznosé szeregu (5.40) jest réwnowazna
istnieniu statej C' > 0, takiej ze

(5.41) i i e < C

n=0 k=0

dla kazdych N, K € N. Dlatego tez fakt zbieznosci szeregu podwdjnego o wyrazach
nieujemnych bedziemy oznaczaé¢ krétko przez

0o oo
ZZO‘"”“ < Q.

n=0 k=0
W przeciwnym wypadku bedziemy pisa¢
[e.e] o0
Z Z Qn = OQ.
n=0 k=0

Warunek (5.41) pociaga réwnowaznosé

o0 [ee] o0 [ee]
ZZO‘"”C <00 = ZZ@M < 00

n=0 k=0 k=0 n=0
dla Qo k Z 0.

5.42. Uwaga. Niech o, 1, € R. Jesli

o0
Z | 1| < o0,

k=0

NE

i
o

to szereg podwojiy Y 7 o > r  au, i jest zbiezny. Wystarczy dwukrotnie skorzystaé
z Wniosku 5.6. Innymi stowy, szereg podwojny bezwzglednie zbiezny jest zbiezny.

5.43. Lemat. Jesli o, 1, > 0, to

>

n=0

oo
E Qo k-

0 n=0

hE

)
Qn k=

i

0 k
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Dowdd. Niech

wiec

Przez symetrie indekséw uzyskujemy takze nieréwnos¢ przeciwng. 0O

5.44. Lemat. Jesl:

0o o0
DD lans| < oo

n=0 k=0
to oba szeregi podwdjne o wyrazie ogdlnym o, i sq zbiezne do tej samej sumy.

Dowdéd. Zbieznosé¢ obu szeregéw wynika z Uwagi 5.42. Niech

ZZan,k = A.

n=0 k=0
Wtedy dla dowolnego € > 0

N K K N
E E Qn k= Qn k
n=0 k=0 k=0 k=0
oznacza to, ze
[o.¢] [o.¢] o [o.¢]
E E Qp | = A= E E A ks

do czego dazyliSmy. O

Wazna klase szeregdéw stanowia szeregi potegowe, tzn. szeregi postaci

(o]
E anx”.
n=0

Przyktadami takich szeregéw, ktore juz znamy sa m.in.:

(1) Yab=:,  oilez| <1
k=0
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2) L2 =¢*,  dlazeR;

k!
k=0
3) X éi’;, = coshz, dla z € R;
k=0
S 22k+1 .
(4) kzgom = Slnhx, dla z € R;

(5) Y kat = Ty oile |z] < 1.
k=0
Jesli szereg potegowy >~ a,x™ jest zbiezny, to mozemy okresli¢ funkcje

flz) = Z a, z".
n=0

Jej dziedzina jest zawsze niepusta, gdyz dla x = 0 powyzszy szereg jest oczywis-
cie zbiezny. Zajmiemy sie teraz doktadniejszym badaniem dziedziny takich funkcji.
Dla danego ciagu {a, },en niech

o = limsup {/|ay,|.

Wielkosé
0, 0 = 00,
r =4 00, o=0,
1/o0, 0€(0,00).

nazywamy promieniem zbieznosci szeregu potegowego > - a,z". Kolejne
twierdzenie wyjasnia nieco, skad taka nazwa.

5.45. Twierdzenie. Niech liczba r bedzie promieniem zbiezno$ci szeregu potego-
wego Y apx”. Wiedy

o

(1) |z|<r = szereg > a,x™ jest zbiezny bezwzglednie;
n=0

(2) |z|>r = szereg Y a,a” jest rozbieiny.
n=0

Dowdéd. Aby zbadaé bezwzgledna zbieznosé szeregu, skorzystamy z kryterium
Cauchy’ego. Ot6z, skoro

limsup \/ |an$n = ‘x| hmsup 1/ |an| = u7

n—oo n—oo r
oile r € (0,00), wiec jesli |z| < r, to limsup,_ .. ¥/|a,z"| < 1 1 szereg jest
zbiezny bezwzglednie, jesli za$ |z| > r, to szereg jest rozbiezny. Gdy r = oo, tzn.
limsup,, .., V/|a.| = 0, to szereg jest zbiezny dla kazdego = € R. Wreszcie gdy
r=0,todlax#0

limsup {/|a,| =00 = limsup {/|a,z"| = 00

n—oo n—oo
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i szereg jest rozbiezny. 0O

Kilka przyktadow:

e Dla szeregu

n=1
otrzymujemy promien zbieznoSci r = 1. Sprawdzmy jeszcze, co dzieje sie
dla |z| = 1. Otéz mamy

1 = Z(_l)n+1<
xr = 00;
n=1 n
= (1)t =1
=—1 = L (—)==) - =
' e YT

Oznacza to, ze szereg ten jest zbiezny dla x € (—1,1] i rozbiezny poza tym,
przy czym wewnatrz przedzialu zbieznos¢ jest bezwzgledna, a w x = 1
warunkowa.

e Rozwazmy

Skoro

1r =i oLy ( ) —1

T = 111msu — = 11Im

n—)oop n2 n—oo \/_ ’
1

=1 = Z! Zn—

wiec szereg ten jest zbiezny (i to bezwzglednie) dla € [—1, 1] i rozbiezny
poza tym.

e Dla szeregu
o0
2"
n=0
mamy oczywiscie r = 1 oraz rozbiezno$¢ dla |z| = 1.

e Dla szeregu

otrzymujemy

. W1 _ 1
o= limsup {/ — = limsup — = 0,
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skad r = oo, co oznacza, ze szereg ten jest zbiezny (bezwzglednie) dla
wszystkich x € R.

e Dla szeregu

(o)
E n "
n=0

mamy
o = limsup vVn" = limsupn = oo,
n—oo n—oo
wiec promien zbieznosci wynosi r = 0, czyli szereg ten jest zbiezny tylko
dla z € {0}.
e Dla szeregu
o0 oo
Zx%: 1+22+24 4. .. :Zana:”
n=0 n=0
mamy
1, gdy n jest parzyste,
a =
" 0, gdy n jest nieparzyste,
czyli

W B { 1, gdy n jest parzyste

0, gdy n jest nieparzyste,

skad limsup,, ., /|a,| = 1, wiec 7 = 1. Oczywiscie dla |x| = 1 szereg jest
rozbiezny.

5.46. Twierdzenie. Jesli Y~ a,x" jest szeregiem potegowym o promieniu zbiez-
nosct r > 0, to funkcja

flz) = Z anx"
n=0

jest ciggta w przedziale (—r,r).

Dowdd. Niech z,y € (—r,r). Istnieje taka liczba R, ze |z|, |y| < R < r. Wezmy
dowolne ¢ > 0. Mamy

N 0o N 00
@)~ f@) = | Y aa+ Y =Y aw — Y a”

0 n=N+1 0 n=N+1
N N o) 00

<Y aa =Yy + 3 Jadel + 3 Jaallyl
0 0 n=N+1 n=N-+1
N N 00

<Y anr" =D anyt | +2 ) an| R
0 0

n=N-+1
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Drugi sktadnik powyzszej sumy jest podwojona reszta szeregu zbieznego, wiec

o0

> JanlR" <,

n=N+1
dla dostatecznie duzych N. Dla kazdego N

N
fn(z) = Z an 2"
0

jest oczywiScie wielomianem, a wiec funkcja ciaglta. Wobec tego

[fn(@) — fn(y)l <e,

jesli y jest dostatecznie bliskie x. Ostatecznie

[f(z) = fy)] < 3¢,

jesli y jest dostatecznie bliskie x przy dostatecznie duzym N, co dowodzi ciggtosci
funkcji f w przedziale (—r,r). O

A oto twierdzenie o cigglosci szeregu potegowego na brzegu przedziahu.

5.47. Twierdzenie. Niech Y . a,z™ bedzie szeregiem potegowym o promieniu
zbieznosci v > 0. Zatdzmy, ze szereq Y~ a,r" jest zbiezny. Niech

o
f:(=rr]sx+— Zanx".
n=0

Wtedy f jest funkcjq ciggta na (—r,r]. W szezegdlnosci
F(r) =l f(a)

T—T—

Dowdéd. Oczywiscie wobec poprzedniego twierdzenia pozostaje do rozwazenia
punkt ciggto$é¢ w punkcie r. Wezmy wiec x € (0,r). Mamy

N N 00 0o
1)~ F@1 < | Y awrm =S a1 S a4 S ane”]
0 0 n=N+1 n=N+1

Pierwsze dwa sktadniki mozna oszecowaé jak wyzej. Rzeczywiscie drugi przed-
stawia reszte szeregu z zalozenia zbieznego, a pierwszy réznice wartos$ci wielomianu.
Istota sprawy lezy w sposobie oszacowania ostatniego sktadnika. Mamy

o0 oo T n
E anx" = g am”(—) ,
-

n

gdzie a,r" jest wyrazem szeregu (znéw z zalozenia) zbieznego, a (%)" wyrazem

ciggu monotonicznie zbieznego do zera. Na mocy nieréwnosci Abela

o0 T N+1
| Z anxnlgﬁN(;) < O,

n=N-+1
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gdzie

By = | sup a,r"| — 0,
m>N

gdy N — oo. To pokazuje, ze i trzeci wyraz mozna uzna¢ za maly przy dostate-
cznie duzych N. Reszta dowodu jest juz powtorzeniem rozumowania z dowodu
poprzedniego twierdzenia. O

5.48. Przyklad. Rozwazmy wielomian stopnia nie wiekszego niz N

Wtedy
N N n n
f(x +h) :Zan(x—l—h)" = Zan <k)xn_khk
0 0 k=0
N N N gk N
- Z h* Z (k) anr"F = Z o Z[n]k anz" "k
k=0 k k=0 k
N
B k! ’
k=0
gdzie

e =nn—1)(n-2)...(n—k+1),  fule)=) [nlsa.z"".

Dla x + h = y otrzymujemy

fl) =) fel@) i

k!
k=0
5.49. Twierdzenie. Niech bedzie dany szereg potegowy f(x) =D 2 a,z" o dodat-
nim promieniu zbieznosci r. Wtedy dla kazdego ustalonego |x| < r i dla |h| < r—|z|
funkcja f rozwija sie w szereg potegowy (wokdt punktu x) wedtug wzoru

fla+m) =3 20 g

k!
k=0

gdzie fp(z) =3 " o[k +nlkapnz”, k+nlp=(k+n)(k+n—1)...(n+1).
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Dowo6d. Mamy

f($+h)=ian(x+h)":ian 3 (Z) n—kpk
n=0 n= k=0

Skoro

ZZ (Z) lan][2|" | [F = Z ]an] |z| + ]h]) < 00,

n=0 k=0
bo |z| + |h| < r, wiec szereg podwdjny Jest bezwzgl@dme zbiezny. Mozemy zatem
zamieni¢ kolejno$¢ sumowania, otrzymujac

flo+h) = ZZ() ”—khsz;f;(g)anxn—khk

n=0 k=0 k=0 n=k

Z h_| Z[k + nfpay 2"
k= n=0

D‘

MMM%

il
o

co konczy dowéd. O



6. ROZNICZKOWANIE

Niech bedzie dana funkcja f okreslona w pewnym otoczeniu punktu zy € R.
Méwimy, ze f jest rézniczkowalna w zy (ma w xy pochodna), jedli iloraz rézni-

cowy
@) = fla)
r — T
ma w punkcie xy granice. Oznaczamy ja przez f’(zg) i nazywamy pochodna
funkcji f w punkcie zy. Zatem z definicji

o) — i 1@ = F )

T—T0 T — xo

Réwnowaznie, oznaczajac h = xg — xg, mamy

f(wo +h) — f(x0)
- :

!/ — 1
fwo) = Jimy
Czasem tez oznacza sie pochodng inaczej:

Fa=T2| = rw) = Dite)

Pierwsze oznaczenie pochodzi od Lagrange’a, drugie od Leibniza, a trzecie od New-
tona. Najczesciej bedziemy uzywali dwdch pierwszych.
Wiemy juz, ze

xr=

T o

d . a®—a -
—a = lim — =a"loga
dx T=x0 T—x0 X — X
dlaa > 01xy> 0 oraz
(0% (0%
d X —xg
—x = lim — = axj
dx =0 r—=r0 T — X

dla zyp > 0 i a € R. Zatem zaréwno funkcja wykltadnicza o dowolnej podstawie,
jak i funkcja potegowa, sa rézniczkowalne w kazdym punkcie swojej dziedziny. W
szczegblnosci
(ex)l — e:[’ (x)/ _ 1
dla kazdego x € R. Latwo rowniez zauwazy¢, ze funkcja stata jest wszedzie rozniczkowalna,
a jej pochodna jest zawsze réwna 0.
6.1. Przyklad. Rozwazmy funkcje zadang szeregiem potegowym
f(z) = Zanx”, x € (r,r),

n=0
gdzie r > 0 jest promieniem zbieznosci tego szeregu. Jak pamictamy, dla kazdego
ustalonego x € (—r,r) i |h| <r — x|,

flz+h) = fx) =) an(x)h”,
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gdzie
B > 1l ok K k!
o) = St (Ko =5

Zatem

i w konsekwencji

czyli
f'(x) = an"‘l.
n=1

Okazuje sie zatem, ze funkcja zadana szeregiem potegowym jest rézniczkowalna w
kazdym punkcie otwartego przedzialu zbieznosci, a jej pochodna wyraza sie takze
szeregiem potegowym, ktéry, jak tatwo spostrzec, ma ten sam promien zbiezno$ci
r. Ponadto jest on zbudowany z pochodnych wyrazow szeregu. Warto zapamietaé
regule, ze szereg potegowy rézniczkujemy wyraz po wyrazie.

6.2. Przyklad. Obliczmy pochodna funkcji logarytmicznej w punkcie xy > 0.
Mamy

log(zg + h) —logz,  log(1l+ %) 1

h B zo/h Ty
Jako ze
log(1
i 081+ 2)
z—0 z

widzimy, ze

(1g) (1) = —

6.3. Fakt. Niech bedzie dana funkcja f okreslona w otoczeniu punktu xq. Funkcja
f gest rozniczkowalna w xo, wtedy @ tylko wtedy gdy istniejg liczba o @ funkcja w
okreslona w otoczeniu 0, takie zZe

(6.4) flx+h) = f(xg) +m-h+w(h)-h,
gdzie limy,_ow(h) = 0. Jesli tak jest, to
m = f'(zo).

Dowo6d. Jesli f jest rézniczkowalna, kltadziemy

w(h) = flzo + h;)L — flzo) F(o) = Flao+h) — féwo) — Fxo)h

dla dostatecznie matych h. Z definicji pochodnej lim, o w(h) = 0, a prosty rachunek
pokazuje, ze zachodzi (6.4), jesli za m przyjaé¢ f'(xo).
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Jesli za$ spelniony jest warunek (6.4), to widzimy, ze

f(wo + 1) = f(o)
h

lim f(zo+h) — f(xo) —m,
h—0 h

co oznacza, ze f jest rézniczkowalna w xg i f'(zg) =m. O

=m+w(h),

wiec

Zauwazmy, ze warunek (6.4) mozna wyrazi¢ tak:

flz) =g(x) + w(z — x0)(z — x0),
gdzie g(x) = m(z — xo) jest funkcja liniowa. Zatem (6.4) méwi, ze f posiada
aproksymacje liniowq, gdyz rdéznica
f(@) = g(x) = w(z — o) (z — o)
dazy do 0 szybciej niz czynnik liniowy, gdy = — x.
Bedziemy moéwili, ze prosta ukosna
y =m(z — o) + f(z0)
jest styczna do wykresu funkcji f okreslonej w otoczeniu punktu x, jesli odlegtosé
punktu P, = (z, f(z)) lezacego na wykresie funkcji od prostej jest mata w poréw-
naniu z jego odlegtoscia od punktu P,, = (xo, f(z0)), gdy = dazy do =z, czyli
jesli
-
im =
a—awo Py Py,
gdzie P, jest rzutem prostopadlym P, na prosta. Mamy
|f(z) = f(zo) — m(z — z0)|
V1+m?

Pxpxo = \/(l’ - :CO)Z + (f(fﬂ) - f($0>2'
Zatem prosta y = m(x—xo) + f(xo) jest styczna do wykresu funcji f, wtedy i tylko
wtedy gdy

0,

PP, =

oraz

(6.5) @) = [ (o) = mlz = o)

’ =0
w0 \/(z —20)2 + (f(z) — f(z0))2

6.6. Fakt. Prostay = m(x—x)+f(xo) jest styczna do wykresu funkcji f okreslonej
w otoczeniu punktu xo, wtedy i tylko wtedy gdy f jest rézniczkowalna w xq i f'(x) =
m.

Dowdéd. Dzielac licznik i mianownik w (6.5) przez x — xq, widzimy, ze stycznosé
jest réwnowazna warunkowi

Lot
(6.7) lim z-20 = 0.

T f@)—f(z0) |
1+ (fmes
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Przypusémy, ze dla pewnego ciagu =, — xg
_ 2
(Lo =Sy
Tn — o
Wtedy
et 1 — Fetrem |

In—X0 T —T(

p— _) 17
2 1
f(zn)—f(zo) _— — +1
\/1 + (#) \/(ﬂm—f(mf
Tn—T(Q

wiec nie ma mowy o stycznosci. Widaé stad, ze warunkiem réwnowaznym (6.7) jest

f(@) — (o)

T — X9

lim

T—T0

—m‘:O,

a to jest nasza teza. O

6.8. Fakt. Jezeli funkcja [ okreslona w otoczeniu punktu xq jest rozniczkowalna w
To, to jest tez ciggta w tym punkcie.

Dowdd. Dowéd wynika natychmiast z istnienia aproksymacji liniowej (6.4). O

6.9. Przyktad. Niech f(x) = |z| i niech xy = 0. lloraz réznicowy
fl@) = flxo) _ 2|

T — T T

nie ma granicy, gdy x — 0, wiec f nie jest rézniczkowalna w tym punkcie. Wykres
tej funkcji ma w punkcie (0,0) ,ostrze” i nie ma styczne;j.

6.10. Fakt. Niech bedzie dana funkcja f okreslona w otoczeniu xq i rozniczkowalna
w tym punkcie. Jesli f ma ekstremum lokalne w xo, to f'(x¢) = 0.

Dowadd. Przypusémy, ze f ma w zy maksimum lokalne. Wtedy dla dostatecznie
malych h # 0

f(xo—h) < f(xo),

skad wida¢, ze lewostronne ilorazy réznicowe beda nieujemne, a prawostronne
niedodatnie. Zatem

J(xo + h) — f(xo)

! = li = 0.
F'(wo) - h 0
W przypadku minimum lokalnego rozumujemy analogicznie. U

6.11. Fakt. Niech f,g bedg funkcja mi okreslonymi w otoczeniu punktu zqy. Jezeli
obie sq rozniczkowalne w xq , to takze funkcje f+g i f-g sq rozniczkowalne w tym
punkcie 1

(f 4+ 9) (x0) = f'(wo) + ' (w0), (f - 9) (x0) = f'(w0)g(w0) + f(x0)g (o).
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Jezeli ponadto g(xg) # 0, to funkcja f/g, ktora jest dobrze okreslona w pewnym
(byé moze mniejszym) otoczeniu o, jest rozniczkowalna w g 1

<[)/(x0) _ f'(wo)g(@o) — f(z0)g'(x0)

g 9(x0)?

Dowdd. Mamy
(f+9)(wo+h) = (f +9g)(x0) flwo+h)— f(o) N g(zo +h) — g(wo)

h h h ’
skad po przejSciu do granicy otrzymujemy pierwsza czesé¢ tezy. Mamy tez

“g)(xo+h)—(f-9)x xo+h)— f(z
(f - 9)(xo })L (f - 9)( o):f(o f)L S 0)-g(x0—|—h)
o+ h)—g(x
+f($0) . g( 0 })L g( 0)_7
co pociaga druga czesé tezy, czyli wzor Leibniza.

Trzecia czesé dotyczaca ilorazu udowodnimy korzystajac z drugiej. Mamy
f)' ( 1)' (o) (1>'
=) (zo) = ([ =) (w0) = + f(xo) - [ = | (@),
(g(> 9()9(%)()9()
wiec wystarczy pokazaé, ze
1y g' (o)
9 9(o)

a to wynika natychmiast z tozsamo$ci
1/1 1 1 o) — glxg+ h
—(—(fﬂo—i-h)——(i[fo)) :_g( 0) g( 0 )7
h\yg g h o g(zo + h)g(zo)

cigglosci g w xy i przejsScia granicznego. ([l

O rézniczkowalnoscei funkeji f w punkcie zp mozna méwic tylko wtedy, gdy jest
ona okre$lona w pewnym otoczeniu (czyli przedziale otwartym) zawierajacym ten
punkt. Dlatego sformutowanie f jest rézniczkowalna w xy bedzie odtad oznaczaé,
ze [ jest okreslona w otoczeniu z( i rézniczkowalna w x.

6.12. Twierdzenie. Niech g bedzie funkcjq rozniczkowalng xo, a f rozniczkowalng
w yo = g(xg). Wiedy funkcja h = f o g jest rdzniczkowalna w xo i h'(xg) =
J'(yo)g' (o). Innymi stowy,

(f 0 9)'(z0) = f'(9(x0))g' (o).

Dowdd. Jako ze g jest rozniczkowalna, ma aproksymacje liniowa
9(xo + h) = g(x0) + ¢'(20)h + wy(h)h,
gdzie wy(h) — 0, gdy h — 0. Oznaczmy
k=k(h) = ¢'(xo)h + wy(h)h.
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Podobnie rézniczkowalno$é¢ f oznacza, ze

flyo+k) = flyo) + f'(yo)k + wy(k)k,
gdzie wg(k) — 0, gdy k — 0.

Zatem
fog(xo+h)— fog(ro) _ fyo + k) — f(wo)
h h
= POIRE ) _ 1) (a0) + ),
gdzie
Q(h) = wg<h) +wy (k<h)) (g,(»’UO) + wg(h>) — 0,
gdy h — 0. Przechodzac z h do 0, otrzymujemy teze. U

6.13. Twierdzenie. Jezeli funkcja [ : (a,b) — (c,d) jest wzajemnie jednoznaczna
i ma w punkcie xg € (a,b) niezerowq pochodna, to funkcja odwrotna g : (¢,d) —
(a,b) jest rézniczkowalna w yo = f(xo) i ¢'(yo) = 1/ f'(x0). Innymi stowy,

—1\7/ . 1 —1\/ — ;
) =Ty o ) = gy
Dowdéd. Oznaczmy funkcje odwrotng do f przez g. Mamy
i 9@ —9o) _ . 9(y) —9(w)
y=v0 Y — Yo v=w f(9(y)) = f(9(10))
T — To 1

= lim

eozo f(2) — f(zo)  f(z0)

g

Jezeli funkcja f : (a,b) — R jest rézniczkowalna w kazdym punkcie z € (a,b),
to méwimy, ze jest rézniczkowalna w przedziale (a,b). W ten sposéb pojawia
sie nowa funkcja

(a,b) 3 x— f'(z) €R,

zwana funkcja pochodna.

6.14. Twierdzenie. Funkcja pochodna na odcinku otwartym I ma wtasnosé Dar-
bouz.

Dowaéd. Niech
flla) <A< f'(b)
dla pewnych a < b z odcinka I. Nalezy pokazad, ze istnieje punkt a < ¢ < b, taki
ze f'(c) = A.
Przypu$émy na razie, ze A = 0. Skoro f'(a) < 01 f'(b) > 0, to dla pewnych
a < ap < b <bjest

flar) < f(a), f(b1) < f(b),



6. Rozniczkowanie 95

a wiec w zadnym z punktéw a, b funkcja ciggla f nie przyjmuje swojej najmniejszej
warto$ci na odcinku [a, b]. Istnieje wiec ¢ € (a,b), w ktérym ta najmniejsza warto$é
jest przyjeta i tam tez f'(c) = 0.

Jesli teraz A jest dowolne, stosujemy powyzsze rozumowanie do funkcji

g9(x) = f(zx) — Az,
ktoéra spelnia
¢(a) <0< g).
Mamy wiec ¢'(c) = 0 dla pewnego a < ¢ < b, a stad f'(c) = A. OJ

6.15. Twierdzenie (Rolle). Niech f : [a,b] — R, gdzie a < b, bedzie funkcjq
cigglq i rozniczkowalng w (a,b). Jezeli ponadto f(a) = f(b), to istnieje ¢ € (a,b),
takie ze f'(c) = 0.

Dowdd. Funkcja f jako ciggla na przedziale domknietym przyjmuje najwieksza i
najwieksza wartos¢. Jesli obie sg przyjete na koncach przedziatu, to wobec f(a) =
f(b) funkcja jest stala i nasza teza jest oczywista. W przeciwnym wypadku f ma
ekstremum lokalne (i globalne) w ¢ € (a, b) i w tym punkcie musi by¢ f'(¢) =0. O

6.16. Twierdzenie (Lagrange). Niech f : [a,b] — R, gdzie a < b, bedzie funkcjq
ciggtq i rozniczkowalng w (a,b). Wtedy istnieje ¢ € (a,b), takie ze
f(b) — f(a)
/ J—
f (C) - b —a .

Dowdd. Niech

gtz) = 1O~

Jak tatwo zauwazy¢, funkcja F' = f — g spelnia zatozenia twierdzenia Rolle’a, wiec
F'(¢) = 0 dla pewnego ¢ € (a,b), a stad

f'le)=4g'(c) =

(x —a) + f(a), x € [a,b].

f(0) — f(a)
b—a

7 twierdzenia Lagrange’a tatwo otrzyma¢ nastepujace trzy wnioski.

6.17. Wniosek. Jesli f : (a,b) — R jest rozniczkowalna i f'(x) =0 dla x € (a,b),
to f jest funkcjq statq.

6.18. Wniosek. Funkcja f rizniczkowalna w przedziale (a,b) jest rosngca (male-
jaca), wtedy i tylko wtedy gdy jej pochodna w tym przedziale jest nieujemna (nie-
dodatnia).

6.19. Wniosek. Jezeli funkcja [ okreslona w przedziale (a,b) ma dodatniq (ujem-
ng) pochodng w tym przedziale, to jest Scisle rosngcea (malejgca).



96 Analiza B

Niech bedzie dana funkcja f : (a,b) — R. Funkcje rézniczkowalna F' : (a,b) —
R, taky ze F'(z) = f(z) dla z € (a,b) nazywamy funkcja pierwotna funkcji
f. Oczywiscie, jesli F jest pierwotna f, to i F.(x) = F(x) + ¢ jest pierwotng f,
wiec funkcja pierwotna (o ile istnieje) nie jest wyznaczona jednoznacznie. Tym
niemniej, dwie rézne funkcje pierwotne na odcinku moga sie rézni¢ tylko o stala.
Rzeczywiscie, jesli

Fl(z) = f(x) = Fy(z), z € (a,b),

to (Fy — Fy)'(z) = F(z) — Fj(x) = 0, wiec na mocy Wniosku 6.17, funkcja Fy — F}
jest stala.

6.20. Lemat. Funkcja [ zadana szeregiem potegowym

[e.9]

flz) = Zanx", x € (r,r),

n=0

gdzie v > 0 jest promieniem zbieznosci tego szerequ, ma zawsze funkcje pierwotng.
Wyraza sie ona szeregiem potegowym

> a
HORD Bt
—n+ 1

o tym samym promieniu zbieznosci.

Dowdéd. Najpierw sprawdzamy, ze promien zbiezno$ci nowego szeregu jest takze
réowny r, a potem rézniczkujac wyraz po wyrazie przekonujemy sie, ze F' = f. 0O

Nie kazda jednak funkcja ma pierwotng. Wystarczy przypomniec¢ sobie, ze funkcja
pochodna ma zawsze wlasno$é Darboux (por. Twierdzenie 6.14). Zatem funkcja
nie majaca tej wlasnosci, a w szczegdlnosci funkcja majaca niecigglosci pierwszego
rodzaju, nie moze mie¢ pierwotnej. Pdozniej zobaczymy jednak, ze kazda funkcja
ciggta ma pierwotna.

6.21. Przyklad. Korzystajac z lematu rozwiniemy funkcje logarytmiczng w szereg
potegowy. Niech

g(x) =log(1 + x), lz| < 1.
Funkcja pochodna rozwija sie w szereg geometryczny
@) = —— = Y1y
g S l4ax
n=0
o promieniu zbieznosci r = 1, wiec
— (-1)" +1 - 12"
— n — -1 n+1
9(z) nzzonﬂx ;( )=

dla |z| < 1.
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Méwimy, ze funkcja g : (a,b) — R zmienia znak z ujemnego na dodatni w
punkcie ¢ € (a,b), jesli istnieje h > 0, takie ze (¢ — h,c+ h) C (a,b) oraz
<0, c—h<z<eg,
f(q;) =0, xz=g¢
>0, c<zr<x+h.

Analogicznie definiujemy zmiane znaku z dodatniego na ujemny.
A oto kolejny wniosek 7 twierdzenia Lagrange’a.

6.22. Wniosek. Niech f bedzie rozniczkowalna w (a,b). Jesli pochodna f' zmienia
w punkcie xg znak z wjemnego na dodatni (z dodatniego na ujemny), to f ma w xg
Sciste minimum (maksimum) lokalne.

Dowdéd. Przypu$émy, ze pochodna zmienia znak w zy z ujemnego na dodatni.
Wtedy dla x dostatecznie bliskich z

f(@) = f(xo) = f'(c(x))(x = z0) > 0,

gdzie ¢(x) lezy w odcinku otwartym min{z, zo}, max{x, zo}), wiec zo jest punktem
Scistego minimum. Podobnie rozumujemy w przypadku, gdy pochodna zmienia
znak z dodatniego na ujemny. 0O

Twierdzenie Lagrange’a pozwala tez na nastepujace wazne uogdlnienie.

6.23. Twierdzenie (Cauchy). Niech f,g: [a,b] — R, gdzie a < b, bedg funkcjami
cigglymi 1 rozniczkowalnymi w (a,b). Niech ponadto ¢'(x) # 0, a < x < b. Wtedy
istnieje ¢ € (a,b), takie ze

f'e) _ f(b) = f(a)

gc)  g()—gla)

Dowdéd. Bez straty ogélnosci mozemy przyjaé, ze ¢ > 0 na [a, b]. Niech g(a) = «,
g(b) = 5. Wtedy
fo)—fla) _ fog '(B)—fog '(a)

g(b) —g(a) f-a ’
wiec na mocy twierdzenia Lagrange’a
f(b) — f(a) f'lg' ()

90 —gla) ~ Vo9 V=Gl

dla pewnego a < v < 3. Kladac ¢ = g~!(v), otrzymujemy teze. [

6.24. Uwaga. Czesto wygodnie jest punkt posredni czy to w twierdzeniu La-
grange’a, czy Cauchy’ego, zapisywa¢ w postaci

c=a+06(b—a),

gdzie 0 € (0,1). Zauwazmy tez, ze oba wzory obowiazuja takze dla b < a.
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6.25. Przyklad. Niech f(z) = sinz. Stosujac twierdzenie Lagrange’a z a = 0,
b = z, otrzymujemy

sinz = x cos Oz, r € R,
dla pewnego 0 < 6 < 1. Natomiast stosujac twierdzenie Cauchy’ego do funkcji
f(x) =sinz i g(r) = 2? na tym samym przedziale, mamy

sinx  cosVz

x? 29x
skad
i x cos Uz
sinx =
20

dla pewnego 0 < ¢ < 1.

Jako wniosek z twierdzenia Cauchy’ego mozna otrzymacé tak bardzo lubiane
reguty de I’'Hospitala.

6.26. Wniosek (de 'Hospital). Niech bedq dane funkcje rézniczkowalne
f,9:(a,0) = R,

gdzie a € R, b € RU{oo}. Zatdzmy, ze ¢'(x) # 0 dla a < x < b, a ponadto
/

Przy tych zatozeniach kazdy z nastepujgcych warunkoéw

=3 € RU{+o0}.

lim f(z) = lim g(z) =0, lim g(x) = oo
pocigga
i £ — g T _

r—b— g(l‘ r—b— gl(m)

6.27. Uwaga. Warunek
lim f(z) = lim g(z) =0

r—b— T—b—
nazywa sie krétko symbolem § (pierwsza regula de ’'Hospitala), natomiast warunek

lim g(z) = o0

r—b—

symbolem = (druga reguta de I'Hospitala).

Dowdd. Dowdd przeprowadzimy dla przypadku g € R pozostawiajac uzupelnienie
go Czytelnikowi.

Niech € > 0. Na mocy zalozenia o istnieniu granicy ilorazu pochodnych i twierdzenia
Cauchy’ego istnieje a < xy < b, takie ze dla réznych x,y > z

fly) = flx) ‘: f'(c)
9(y) — g(x) g'(c)

-0

< €,
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gdzie x < ¢ < y. Stad

fy) _ fx)
9y) g9y <€
1 — 9@
9(y)
i po prostych przeksztatceniach
f(y) I g(z) L5 9(z) +‘f(:v) .
9(y) 9(y) gl 19y)

Jesli teraz spelnione jest zatozenie pierwszej regutu de I’'Hospitala, to, przechodzac
z = do nieskonczonosci, mamy

9(y)
dla y > xg. Jesli natomiast przyjmiemy zalozenie drugiej reguly, to dla znajdziemy

takie zg < yo < b, ze

f(y)
= =Bl < (34 P)e
9(y) B+8)
dla y > yo. W ten sposéb dowdd zostal zakonczony. O

Niech f: (a,b) — R bedzie funkcja rézniczkowalng. Moze sie okazaé, ze funkcja
pochodna f’ jest rézniczkowalna w jakim$ punkcie xy € (a,b). Méwimy wtedy, ze
funkcja f jest dwukrotnie rézniczkowalna w z, a pochodna (') () nazywamy
druga pochodna f w x( i oznaczamy przez f”(xg). Piszemy takze

d2
F'(ao) = L F )],

6.28. Fakt. Niech bedzie dana funkcja [ okreslona w otoczeniu punktu xq i dwukrot-
nie rozniczkowalna w tym punkcie. Wtedy istnieje funkcja Q okreslona w otoczeniu
0, taka ze

(629 Pl +h) = Fwo) + F'(o)h+ 3 " (eo) 2 + Q(h),
gdzie

. Q(h

3 =0

Dowdd. Mamy
Q(h)  f(xo+h) = f(xo) — f'(w)h — 5 f" (x0)h®
h? h? ’
skad na mocy twierdzenia Cauchy’ego

: Q(h) T f/($0 + eh) — f,(xO) 1 1" o
e = 20h — 3/ @) =0,
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6.30. Fakt. Niech bedzie dana funkcja f okreslona w otoczeniu punktu xq © dwukrot-
nie rozniczkowalna w tym punkcie. Jesli istniejq liczby a,b, ¢, takie ze

(6.31) f(zo + h) = a+ bh + ch® + Q(h),

gdzie limy,_q % =0, to
1
a=[f(xo), b= [(w0),  c=5(w0).

Dowdéd. Przechodzac z h do granicy w zerze, widzimy, ze a = f(x). Podstawiajac
te warto$¢ do wzoru i dzielac przez h, dostajemy

f(@o +h) — f(x0) bt ch Q(h)’
h h
skad po przejéciu z h do zera mamy b = f’(x¢). Aby obliczy¢ ¢, napiszmy
~ flwo+h) = f(zo) — f'(xo)h Q)
- 02 T
Stad na mocy twierdzenia Cauchy’ego

f(xo+h) — f(xo) — f'(zo)h

¢ = lim

h—0 h2
IERT f,(xO + eh) — f/(l‘[))h _ 1 1"
= m 20 =5/ ().

g

6.32. Przyklad. Okazuje sie, ze istniejg jednak funkcje rézniczkowalne spetniajace
warunek (6.30), lecz nie majace w o drugiej pochodnej. Przykladem takiej funkeji
jest

o) = {x:)’sin%, x #0,

0, z=0.

Rzeczywiscie, |o(z)| < |z|? i

o(x) szsin%—%sin%, x #0,
xTr) =
0, =0,
ale iloraz réznicowy
() — ¢'(0 1 1
—(b(m) il ):3xsin——sin—
x x x

nie ma granicy przy = — 0.

6.33. Wniosek. Jezeli f jest funkcjg okreslong w otoczeniu punktu a 1 dwukrotnie
rozniczkowalng w a, to warunki

flla)=0,  f'(a)#0
pociggajq istnienie w a $cistego ekstremum lokalnego. Jesli f'(a) > 0, jest to mini-
mum. Jesli zas f'(a) > 0 — maksimum.
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Dowadd. Rzeczywiscie, na mocy Faktu 6.28

fla+ )= f@) = (570 + 530 )

dla malych h, gdzie znak wyrazenia po prawej zalezy tylko od f”(a), gdyz

%%0, h — 0.
[

Pochodne wyzszych rzedéw definiujemy indukcyjnie. Aby mozna byto méwié o
pochodnej rzedu n+1 w punkcie xg, funkcja f musi by¢ n-krotnie rézniczkowalna
w pewnym otoczeniu xq. Jesli funkcja pochodna rzedu n, ktéra oznaczamy przez
™ jest rézniczkowalna w o, to jej pochodna nazywamy pochodng rzedu n + 1
funkcji f w zg. Zatem

FU D (@) = (£ (o).
Pochodng rzedu n nazywamy tez krotko n-ta pochodna. Piszemy takze

1) = L pw),

dz™

6.34. Twierdzenie (Wz6r Taylora-Cauchy’ego). Niech f bedzie funkcjg n-krotnie
rozniczkowalng w przedziale (a,b). Wtedy dla kazdych x,y € (a,b)

fly) = o (= 2)" + Ra(,y),

gdzie

@+ Iy - "

Rn(may) = (1 - 19)
dla pewnego ¥ = ¥(z,y) € (0,1).

Dowodd. Niech

n—1
r Zf(ky h

k=0
dla a <y — h < b. Jak tatwo zauwazy¢
rn(0) =0, ro(y —x) = R, (y — ).

Ponadto funkcja r, jest rézniczkowalna i

n—1
! ! f(k+1) (y h) f(k) (y B h) -
ri(h)=—f (y_h>+k:1 ( ] h* — = 1)1 h* 1>

_f(k)(y_h) n—1
 (n—=1)! e

(6.35)
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Zatem na mocy twierdzenia Lagrange’a

(K) (4 —
7nn(h) = T;(eh)h = %(Qhwl h
&)y — (1 —

dla pewnego 0 < # =1 — 1 < 1. Podstawiajac h = y — x, otrzymujemy nasza teze.
O

Przy ustalonym z = xy wielomian

n—1 (k) o i
bnaly) = 3 L gy

k!
k=0

nazywamy wielomianem Taylora, a reszte R, (z¢,y) — reszta Taylora funkcji

f

Modyfikacja poprzedniego dowodu daje nowa wersje twierdzenia Taylora.

6.36. Twierdzenie (Wzér Taylora-Lagrange’a). Niech f bedzie funkcjq n-krotnie
rozniczkowalng w przedziale (a,b). Wtedy dla kazdych x,y € (a,b)

n—1 (k) x
s =S Tyt R,
k=0 '
gdzie
M (z+0(y —
dla pewnego 6 = 0(z,y) € (0,1).
Dowdd. Niech jak poprzednio
n—1
— fBy=h)
ra(h) = f(y) — ; D
=0

dla a < y — h < b. Tym razem zastosujemy twierdzenie Cauchy’ego o wspélnym
punkcie posrednim dla ilorazu. Na mocy (6.35) mamy
ra(h) _ r(00) _ f®(y —0h)
hn o n(6h)n1 n!

Po podstawieniu h = y — z otrzymujemy nasza teze. Il

6.37. Wniosek. Niech funkcja [ spetnia zatozenia twierdzenia Taylora. Ustalmy
xo € (a,b). Wtedy

(6.38) li FnF0:v) _ f0 o)

y—zo (y —x0)®  n!
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W szczegolnosci istnieje stata C' > 0, taka ze dla y dostatecznie bliskich x

(6.39) | R (20,y)| < Cly — zo|".

Dowadd. Rzeczywidcie,

Ry(xo,y) _ f(y) — f(=o)

Y

Y — Zo Yy—I
wiec
yh_% Ri(z0,y) = ['(0)
i nasza teza jest prawdziwa w przypadku n = 1. Krok indukcyjny umozliwia

nastepujace spostrzezenie. Z definicji reszty

Ru(z0,y) = f(y) —

widaé, ze
ne

2 (1Y ®) (5, .
R o,) = 1)~ Y0 L

Zatem pochodna R, jest reszta stopnia n — 1 funkcji pochodnej f’. Jesli zatem
zatozymy indukcyjnie, ze wzdr (6.38) jest spelniony dla pewnego n — 1 w przy-
padku funkcji pochodnej, to stosujac twierdzenie pierwsza regute de 'Hospitala,
otrzymamy

/
lim M = lim Rn71<f ,.To,y)
(6.40) y=vo (Y — xo)" y—x0 nyn—1
. _ (f/)(n_l)(l'o) _ f(n)(l’o)
n(n —1)! nl
a o to wlasnie nam chodzilo. -

Gdy punkt z( jest ustalony, wygodniej jest formutowac i zapisywaé twierdzenie
Taylora w nastepujacej rownowaznej postaci.

6.41. Twierdzenie (Wzér Taylora). Niech [ bedzie funkcjg n-krotnie rézniczkowalng
w otoczeniu punktu xg. Wiedy dla dostatecznie matych h

n—1 f(k) (.To)

flao+h) =D = —h* + Ru(h),
gdzie
_ [W(xo+0h), ., o1 S (@0 +0h)

dla pewnych 0 < 0,9 < 1. Ponadto

(n)
h—0 hm" n!
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Czasem mozna otrzymac rozwiniecie funkcji w sume czeSciowa szeregu pote-
gowego, nie wiedzac doktadnie, jak wygladaja jej pochodne. Kolejne twierdzenie
umozliwia sprawdzenie, czy dane rozwiniecie jest rzeczywiscie rozwinieciem Tay-
lora. Okazuje sie, ze jedynym istotnym warunkiem jest, by reszta miata wlasnosé
(6.39).

6.42. Twierdzenie (Wzor Taylora-Peano). Niech f bedzie funkcjg n-krotnie rézniczkowalng
w przedziale (a,b). Jedli dla pewnego x¢ € (a,b) i dostatecznie matych h

flzo+h) = chh + (b

gdzie
ra ()| < CoR"
dla pewnego C, > 0, to
F®) (z0)
k7
Zatem rp(h) = R, (xo,z0 + h) jest resztq Taylora.

Cr = 0§k§n—1.

Dowdd. 1 tym razem bedziemy rozumowac indukcyjnie. Jesli n =11
f(xo+h) = co+ri(h), Ir1(h)| < Cilhl,

to przechodzac z h do 0, dostajemy cq = f(xg). Zatézmy wiec, ze teza zachodzi dla

pewnego n oraz
n

f(.%‘() + h) = Z Ckhk + 7’n+1(h),
k=0
gdzie
P ()] < Cryh™*?
dla pewnego C,, .1 > 0. Wtedy

l’o+h chh —l—pn

gdzie
[pn(R)| = [cah™ + rnga(R)] < ([en] + Cuga|R])[A]™,
wiec na mocy zatozenia indukcyjnego
f(k)(xo)
Cr = )
k!
a pn(h) = R, (xg,x0 + h) jest reszta Taylora. Pozostaje obliczy¢ wartosé ¢,,. Ale
pn(h) = rnia(h)
hn ’

0<k<n-1,

Cp =

wiec
¢, = lim Bn(wo, %o + h) — f(")(xo)
h—0 h" n!
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na mocy (6.38). O

Rozwiniecie Taylora wokét xq = 0 nazywa sie takze rozwinieciem Maclau-
rina.

6.43. Przyktad. Rozwinmy funkcje sinus we wzér Maclaurina. Jako ze
d2n )

- smeE:O =0,
dx

d2n+1

dla n € N U {0}, rozwiniecie przyjmuje posta¢é

S (D

L T ok
sinz = 2 <2k+1>!$ + Rony1(2),
gdzie
cos 0,x
R " — (—1)" n 2n+1
2 +1(x) ( ) (2n+1)|$ )
dla pewnego 6,, € (0, 1), a wiec
|20+
Ry, <

To pokazuje, ze dla kazdego z € R
lim R2n+1($) = 0,

czyli

i a2k
sinz = (=)
prt (2k + 1)!

Przypomnijmy, ze
o0 2k+1
sinhx = :c—'
pr (2k + 1)!

Podobienstwo tych rozwinie¢ ttumaczy czesciowo podobienstwo nazw obu tych na
pierwszy rzut oka bardzo niepodobnych funkcji.

6.44. Przyklad. Niech a € R. Rozwinmy funkcje f(z) = z* we wzér Taylora
wokét punktu xg = 1. Mamy
dk x>
dx®
Wprowadzmy nowe oznaczenie

(Z) _a(a—l)..l.f!(a—k%—l)?

=afa—1)...(a —k+ 12"
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ktore jest oczywistym uogélnieniem znanego nam symbolu Newtona. Zatem

1 drze [«
rx=1 a k

k! da*
i wzér Taylora przyjmuje postaé
n—1
!
1+h)* = h* + R, (h), h| <1,
=3 Q) .

gdzie
Q@ «

n n

R,(h) = ( )(1 4 0,h)* "R =n(1 — ﬁ)n—l(

dla odpowiednich 0 < 6,,,v,, < 1. Prawa strona wzoru Taylora, jesli pomina¢ reszte,
przedstawia sume czeSciowy szeregu potegowego Taylora

> (3)

k=0

)(1 + 9, h) R

ktérego promien zbieznosci jest réwny 1, a wiec zbieznego dla |h| < 1. Udowodnimy,
ze w istocie

= [«
1+ h)*= k. h| < 1.
=3 ()
W tym celu nalezy wykazaé, ze dla kazdego ustalonego h
lim R,(h)=0.

Jesli 0 < h <1, to
(1+9,h)* " <1

dla n > a oraz

(1= 0,)" (1 — 9, = ( L= O

1 —-v,h

(&))@ = tawir,
(0] <

6.45. Przyklad. Zastosujmy wzér z poprzedniego przyktadu w przypadku a = %
Mamy

n—1
) (1—9,h)* < (1—h)""
Widzimy wiec, ze dla —1 < h <1

| Rn(R)] <

a poniewaz

S

n=0

wiee R, (h) — 0.

> /1
1+h= (z)h’“ |h| <1,
k=0
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gdzie
5 :(_1)k_11-3-5-- (2k —3)
k 2. 4-6G----- 2%
Biorac o = —3 i h = —2?, otrzymujemy
1 = (-1
— 2 -1 kak,
V1—x? k:O(k)( )
gdzie
(—1)¢ -3 ~1-3-5...(2k—1)
k)  2-4-6...2k
Wobec tego
. 1-3-5...(2k—1)
N 2k
(arcsin ) —; 1 6. Ok )
a stad
, . 1-3-5...(2k — 1) g%+!
arcsmx_}; 2.4-6...2k 2k+1
dla || < 1. W szczegélnosci pamigtajac, ze sin g = %, mamy
T ~=1:3-5...(2k—1) 1
6 £ 2:4-6...2k 2241 (2% + 1)

I jeszcze jeden przyktad.

6.46. Przyklad. Niech
e—l/ac2

0,

x # 0,
xz = 0.

()

{

Nie ma watpliwosci, ze nasza funkcja jest nieskonczenie wiele razy rézniczkowalna
poza zerem. Aby zbada¢ jej rézniczkowalno$¢ w punkcie z = 0, sprawdzmy na-
jpierw przez indukcje, ze dla kazdego n € N U {0} i kazdego x # 0

£ ) = E2l0)

gdzie p,, jest pewnym wielomianem. Rzeczywiscie, dla n = 0, po(z) = 1. Natomiast

r3n
f(n+1) (JI) _ <p;l(l').l’3n — 3711’3”71]9”(1}) 3)61/12
xron x3

(6.47)

_1/22
e l/zr7

P
ZE?’TL

_ pn+1(‘r) —1/22
- r3(n+1) ’

gdzie
Poy1(z) = 2°p) (2) + (3na® + 2)p,(2).
Ze wzoru (6.47) i nieréwnosci

671/:1:2 < N!$2N
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prawdziwej dla kazdego N € N wynika, ze
lim f™(z) =0

z—0

dla kazdego n € N, a stad przez indukcje, ze f ma wszystkie pochodne w zerze i
f™0)=0, neN.

Wobec tego rozwiniecie Taylora funkcji f wokdt zera przyjmuje dla dowolnego n
postacd

f(h) = Ry(h).
Widac¢ tez, ze funkcja f nie rozwija sie w szereg Taylora, bo to oznaczatoby, ze jest
funkcja zerowa, a tak oczywiscie nie jest.

Moéwimy, ze funkcja f okreslona na przedziale I C R jest wypukla, jesli dla
kazdych z,y € I i kazdego 0 < A < 1
(6.48) fOy+ 1 =Nz) <Af(y) + (1= A f(2).

Aby lepiej zrozumieé te definicje, zauwazmy, ze sieczna wykresu funkcji f prze-
chodzaca przez punkty (z, f(z)) i (y, f(y)) jest wykresem funkcji liniowej
t—x

fly) — f(z) t—x
t— = 1-
DI )+ 0 = =)+ (1= 2 ) Fo)
a kazdy punkt t € (x,y) mozna zapisaé jako

t—ux t—x
t= y+(1— )x:/\ty+(1—/\t)x.
y—x
Wstawiajac te wlasnie warto$¢ A = A\, do (6.48), widzimy, ze wypukloéé¢ f jest
rownowazna warunkowi

() < goy(t),  te(zy), zyel

Zatem funkcja f jest wypukla, wtedy i tylko wtedy gdy dla kazdych z,y € I wykres
funkeji na odcinku [z, y] lezy nie wyzej niz sieczna wykresu w punktach o odcietych

TR

Guy(t) =

6.49. Lemat. Jezeli funkcja ciggta f : I — R spetnia warunek

ety o S 1)

a:—l—y)
—_— 2 b

2

x,y €1,

to jest wypukta.

Dowadd. Niech a < b beda punktami odcinka . Przypusémy nie wprost, ze dla
pewnego a < ty < b zachodzi f(to) > g(to), gdzie ¢ = gup jest funkcja liniowa,
ktorej wykres jest sieczng wykresu f. Niech (x,y) bedzie maksymalnym przedzi-
atem zawierajacym ¢, takim ze f(t) > g(t) dlat € (z,y). Taki przedzial istnieje, bo
f — g jest funkcja ciagta. Oczywiscie (z,y) C (a,b) i f(x) = g(x) oraz f(y) = g(y).
Zatem ¢(t) = g,,(t) 1 wobec tego na mocy naszego zalozenia f(t;) < g(t;) dla
t, = x—;“y, co stoi w sprzecznosci z definicjg punktow x, y. O
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6.50. Twierdzenie. Funkcja f: I — R jest wypukta, wtedy i tylko wtedy gdy dla
kazdego ¢ € I iloraz réznicowy

¢c(l€):M, xell\eg,

xr—c
jest funkcjq rosngcq.

Dowdd. Przypusémy, ze f jest wypukla iz <y < c. Wtedy dla pewnego t € (0,1)
mamy y = (1 — t)z + te, wiee f(y) < (1 —1t)f(z) +tf(c), a stad

¢c(y) _ f(y) B f(C) < f(l’) — f(C) => (bc(x)

Yy—c B r—c
Jedli natomiast ¢ < x < y, to x = tc+ (1 — t)y dla pewnego t € (0,1), wiec
flx) <tf(e)+ (1 =1)f(y), skad
— f(c — f(c
bu() = 1Y) = flo) - fly) = f(o) — by
y—c y—c
Wreszcie, korzystajac z poprzednich ustalen, dla x < ¢ < y mamy

Pe(1) = Pa(c) < dx(y) = dy(x) < Py(c) = de(y),

co konczy pierwsza czes¢ dowodu.
Zatézmy teraz, ze ilorazy réZnicowe funkcji f sa rosngce. Jesli z # y i c =
tr+ (1 —t)y, gdzieit € (0,1), t

f(e) = (¢ = z)da(c )+f( ) < (e = 2)da(y) + f(x)

= S22+ (1- S22 ) = (o) + (- 01 0),
wiec funkcja jest wypukta. O

6.51. Wniosek. Funkcja wypukta w przedziale otwartym (a,b) jest ciggta. Ponadto
jest lipschitzowska na kazdym domknietym przedziale [o, f] C (a,b).

Dowaéd. Niech oo < x <y < 3. Na mocy Twierdzenia 6.50

1) - ) < LO=I0 G oy < cugy - ).
gdzie Cy = \f O-1B)| oraz
1)~ sy = 12T s oy ),

gdzie Cy = \f f(a |. Niech C' = max{C}, Cy}. Wtedy

[f(z) = f(y)] < Clz—yl,
a wiec f jest lipschitzowska na odcinku [, (].

Przedzial I = (a,b) jest suma zawartych w nim przedzialéw domknietych, w
ktorych funkcja jest ciggla. Zatem f jest ciggta w I. ([l
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6.52. Przyklad. Nie mozna twierdzi¢, ze funkcja wypukta jest lipschitzowska na
przedziale domknietym. Przykladem ciaglej funkcji wypuktej na [0, 1], ktéra nie
jest lipschitzowska jest x — —4/.

W przypadku funkeji rézniczkowalnych i dwukrotnie rézniczkowalnych wypuktoscé
mozna opisa¢ bardzo przejrzyscie.

6.53. Twierdzenie. Rdzniczkowalna funkcja f : (a,b) — R jest wypukta, wtedy i
tylko wtedy gdy pochodna f': (a,b) — R jest funkcjq rosngcq.

Dowdd. Niech f bedzie wypukla i niech ¢ < z < y < b. Wtedy dla dowolnych
r<t<s<y

[(@) = Ft) _ ) = 1(5)
Tz —1 - Yy—5

wiec przechodzac do granicy z t — x 1 s — y, otrzymujemy

f'(@) < fy)-
Funkcja f’ jest zatem rosngca.

Przypu$émy teraz, ze f' jest rosnaca. Dla a < z < t < y < b mamy

f) = fl=) : fly) — 1)
T:f(cl)ﬁf(cz):?

)

gdzie ¢; € (z,1), a co € (t,y), wiec ¢; < co. Skorzystaliémy z dwukrotonie z
twierdzenia Lagrange’a i z monotonicznosci f dla argumentow c; i co. Otrzymany
warunek jest juz réownowazny wypuklosci. U

6.54. Wniosek. Funkcja dwukrotnie rozniczkowalna f : (a,b) — R jest wypukta,
wtedy 1 tylko wtedy gdy f" : (a,b) — R jest funkcjq nieujemng.

Dowdd. Warunek f” > 0 jest réwnowazny temu, ze f’ jest funkcja rosngca, wiec
mozna skorzystac¢ z udowodnionego przed chwilg twierdzenia. U

Méwimy, ze funkcja f okreslona na przedziale I C R jest $cisle wypukla, jesli
dla kazdych z # y z przedziatu [ i kazdego 0 < A < 1

(6.55) FOy+ (1 =Mx) <Af(y) + (1 = A)f(x).

6.56. Twierdzenie. Rdzniczkowalna funkcja f : (a,b) — R jest Scisle wypukta,
jesli jej pochodna f': (a,b) — R jest funkcjq Scisle rosngcq.

6.57. Wniosek. Funkcja dwukrotnie rozniczkowalna f : (a,b) — R jest $cisle
wypukta, jesli jej druga pochodna f" : (a,b) — R jest funkcjq dodatniq.

Dowody tych dwoch wnioskéw sa tak podobne do analogicznych wnuioskow dla
funkcji wypuktych, ze pozostawimy je Czytelnikowi do samodzielnego uzupetnienia.
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Méwimy, ze funkcja f : I — R jest ($ciéle) wklesta, jezeli funkcja —f jest
(Scisle) wypukta.

Niech f : (a,b) — R. Jedli punkt ¢ € (a,b) ma te whasnosc, ze dla pewnego
dostatecznie malego ¢ > 0 funkcja f jest $cisle wypukta na przedziele (c — ¢, c)
i Scisle wklesta na przedziale (¢,c + €) lub tez na odwrét, to punkt ¢ nazywa sie
punktem przegiecia funkcji f. Zwréémy uwage, ze przy takiej definicji punkt
przegiecia nie musi by¢ punktem ciagtosci funkeji.

6.58. Uwaga. Z definicji wynika natychmiast, ze jesli druga pochodna dwukrotnie
rozniczkowalnej funkeji f zmienia znak w punkcie ¢, to jest on punktem przegiecia.

6.59. Fakt. Niech n > 2. Niech bedzie dana funkcja f rozniczkowalna n + 1 razy
w otoczeniu punktu c. Zatozmy, ze

flle)=f"(c)=-=["c)=0
oraz
() #0.
Jezeli n jest parzyste, to punkt c jest punktem Scistego ekstremum lokalnego, a jesli
nieparzyste — punktem przegiecia.

Dowdd. Przypusémy najpierw, ze n jest parzyste i rozwinmy we wzoér Taylora
pochodng f' wokét punktu c. Mamy
(n) (n) h
fc+h)= / m(C) W'+ 1, (h) = (f ) + Il ))h”—l,

n! hn—1

gdzie
|rn(R)] < Cnlh]".
Widaé wiec, ze wobec nieparzystosci n — 1 pochodna f’ zmienia znak w punkcie c,
co dowodzi, ze ¢ jest punktem scistego ekstremum.
Jesli natomiast n jest nieparzyste, to rozwijamy druga pochodna we wzoér Taylora
wokét ¢ 1 widzimy, ze

(n)
pesny = 120

(n)
n—2 _ f (C) rn_l(h) n—2
———h"" "+ r,q(h) = < e h" %,
gdzie
-1 (R)] < Coa[B",
wiec teraz wobec nieparzystosci n — 2 druga pochodna zmienia znak w c. Zatem c
jest punktem przegiecia. [l
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Zacznijmy? od twierdzenia, ktére poglebi nasza znajomoéé funkeji cigglych. Doty-
czy ono pojecia jednostajnej ciagtosci. Funkcje f : I — R nazywamy jednostajnie
ciagla, jesli dla dowolnych ciagéw {z,}, {y.} C I, takich ze x,, — y,, — 0, jest

flzn) — f(yn) — 0, n — oo.

Zauwazmy najpierw, ze jesli jeden z naszych ciagéw jest staly, a wiec gdy np.
Yn = To, powyzszy warunek oznacza po prostu ciaglos¢ w punkcie xy. Tak wiec,
funkcja jednostajnie ciagta jest ciagta. Z kolei funkcja

1
f(x)=—, x € (0,1),
jest przyktadem funkcji ciaglej, ale nie jednostajnie ciaglej. Rzeczywiscie, ktadac
ra =1y, = ;L. mamy
1
n_ Yn — > 1 n) n) — _]-7
B = gy § f@) — )

a wiec f(x,) — f(y,) nie zmierza do zera, cho¢ z,, — y, tak. Jednostajna ciaglosé
to zatem co$§ wiecej niz ciaglosc.

7.1. Uwaga. Kazda funkcja lipschitzowska f : I — R jest jednostajnie ciggta, co
wynika wprost z oszacowania

’f(mn)_f<yn)‘ Sc‘xn_yn‘> xnaynel-

Definicje jednostajnej ciagtosci mozemy tez sformutowaé za pomoca kwantyfika-
toréw w duchu Cauchy’ego. Mianowicie, funkcja f : I — R jest jednostajnie ciagla,
wtedy i tylko wtedy gdy

Ve>036>0Va,yel (|m—y|<(5 — |f(x)—f(y)\<5).

A oto zapowiedziane twierdzenie.
7.2. Twierdzenie. Funkcja ciggta na odcinku domknietym jest jednostajnie ciggla.

Dowdd. Przypusémy nie wprost, ze funkcja ciagta f : [a,b] — R nie jest jednos-
tajnie ciagta. Istnieje wtedy € > 0 i istnieja ciagi o wyrazach z,,y, € [a,b], takie
ze

[En—yn—>0, ale |f(xn)_f(yﬂ>| > €.
Na mocy twierdzenia Bolzano-Weierstrassa z ciagu {y,} mozemy wybraé podciag
{Yn, } zbiezny do pewnego xy € [a,b]. Oczywiscie wtedy takze x, — =z, wiec

Dzickuje Panu Tomaszowi Stachowiakowi za uwazne przeczytanie tego rozdziatu i cenne
uwagi.



116 Analiza B

wobec ciaglosci f

f@n) = f(@o),  flyn) — f(0),
a to przeczy naszemu zalozeniu |f(x,,) — f(yn, )| > >0. O

Podzialem odcinka [a,b] C R nazywamy kazdy skonczony zbiér P C |a,b]
zawierajacy oba konce odcinka. Niech

Aa=To<T1<T3<--<T,=b
bedg punktami podziatu P. Odcinki
I, = [vp_1, 21), 1<k <n,
bedziemy nazywali odcinkami podziatu P. Jedli f : [a,b] — R jest funkcja

ograniczona, a P podziatem [a, b], to liczby
S(f,P) = Zsipf- [Tl S(f,P) =) inf [ |,
k=1 k=1
gdzie |I;| oznacza dlugo$é k-tego odcinka podzialu P, nazywamy odpowiednio
gérna i dolng sumag calkowsq funkcji f.

7.3. Lemat. Jesli P C Q sq podziatami odcinka [a,b], a f jest funkcjq ograniczong
na [a,b], to

S(f.P) < S8(f,Q) < 5(f,Q) < S(f, P).

Dowd6d. Nieréwnosé srodkowa jest oczywista, a nieréwnosci skrajnych dowodzi
sie podobnie. Dowiedziemy, ze S(f,Q) < S(f, P). Przez latwa indukcje dowéd
sprowadza sie do przypadku, gdy () zawiera tylko o jeden punkt wiecej niz P.
Niech wige P = {z;}}_y, @ = PU{c} iz 1 < ¢ < x4 dla pewnego 1 < k < n.
Wtedy

n

S(f,P)y=>_ sup f(x)(x; —z-1)

=1 [&i—1,25]

= Z sup f(x)(w; —x—1) + sup  f(x)(xp — Th—1)

£k [Zi-1.24] [er—1,2k]

> Z sup f(z)(z; —xj-1) + sup f(z)(c— k1) + sup f(z)(zx — )
2k [®i-1.25] [zr—1.d] [e,k]

= 5(f,Q),

co byto do okazania. O

7.4. Wniosek. Jesli P i Q sq podziatami odcinka [a,b], a f jest funkcjg ogranic-
zong na [a,b], to

S(f,Q) < S(f, P).
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Dowdd. Rzeczywiscie,

S(f,Q) < S(f,QUP) < S(f,QUP) < S(f,P)
na mocy lematu. 0O

Niech P oznacza rodzine wszystkich podzialéw odcinka [a, b]. Skoro kazda catkowa
suma dolna danej funkcji ograniczone]j jest nie wieksza od kazdej sumy gornej, zbiér
wszystkich dolnych sum catkowych jest ograniczony od géry, a zbiér wszystkich sum
gornych ograniczony od dotu.

Liczby

/f int 5(7.P). /f—supSfP)

PepP
nazywamy odpowiednio gérng i dolng caltka Darboux funkcji f. Oczywiscie

1f§7f.

Ograniczong funkcje f : [a,b] — R nazywamy calkowalng w sensie Riemanna,
jesli jej catki Darboux sa réwne. Ich wspdélng warto$¢ nazywamy wtedy calka
Riemanna z funkcji f i piszemy

Jo= L= [y [5= [

Rodzing funkcji catkowalnych na odcinku [a, b] oznaczaé bedziemy przez R([a, b]).
Zauwazmy, ze

Q(f.P)=S(f,P) = S(f.P)=>_ sup (f(z) — f(y))|Ll.

k x,y€ely
gdzie I, sa odcinkami wyznaczonymi przez podzial P.
7 definicji catkowalnosci funkeji wynika tatwo
7.5. Fakt. Funkcja ograniczona f : [a,b] — R jest catkowalna, wtedy i tylko wtedy
gdy dla kazdego € > 0 istnieje podziat P odcinka |a,b], taki zZe
Q(f,P) <e.

7.6. Fakt. Jesli f € R([a, b)), to f € R([c,d]) dla kazdego [c,d] C [a,b]. Z drugiej
strony, jesli f € R([a,c]) i f € R([e,d]), to f € R([a,].
Dowdéd. Niech P bedzie podziatem odcinka [a, b]. Niech

P'=(PnNled)U{cd}.
Zbiér P’ jest podzialem [c, d] i latwo zauwazy¢, ze

Qe (f, P) < Quay(f, P),

skad natychmiast wynika pierwsza czesé tezy.
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Jesli natomiast P; i P5 sa odpowiednio podziatami [a, ] i [¢,b], to P = P, U P,
jest podziatem [a, b] i

Q[a,b](fa P) S Q[a,c}(f7 Pl) + Q[c,d]<f7 P2)
Stad juz wynika druga czesé¢ tezy. O
Srednica podziatu P = {z; }io nazywamy liczbe

0(P) = max |u; — x|

7.7. Twierdzenie. Jesli f : [a,b] — R jest ciggla, to jest calkowalna.

Dowdéd. Niech € > 0. Funkcja f jest jednostajnie ciagla, wiec istnieje o > 0, taka
ze

@) = fWl <. eyl <s

Niech P bedzie podziatem odcinka [a,b] o Srednicy mniejszej niz §. Niech {I; ?:_3
beda odcinkami podziatu. Wtedy

Zsup I

co dowodzi naszej tezy. O

7.8. Przyktad. Rozpatrzmy bardzo prosty lecz wazny przyktad. Niech f(z) =
na odcinku [a, b]. Wtedy dla kazdego podziatu P

ﬁ(f,P):§<f,P>:b—a,
wiec f jest calkowalna i fabf =b—a.

7.9. Lemat. Jesli f,g sq ograniczonymi funkcjami na [a,b], a A € R, to

[f+g§_/f+/g, /f+g>/f+/g,
Jr=afr [ar=afs /—fz—lf-

Stad natychmiast wynika

7.10. Lemat. Jesli f, g sq catkowalnymi funkcjami na [a,b], a A > 0, to

/f+>\g:/f+)\/g.
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7.11. Lemat. Jesli f € R([a,b]), to |f| € R([a,b]).

Dowdéd. Rzeczywiscie, dla kazdego Podziatu P
Q(fI, P) < Qf, P),

co wynika z nieréwnosci tréjkata. Zatem catkowalnos$é f pociaga catkowalnosé |f|.
a

7.12. Fakt. Jesli f,g € R([a,b]) i f < g, to [ [ < [g. W szczegdlnosci, jesli
f>0,t0 [f>0.

7.13. Fakt. Jesli f € R([a,b]), to | [P f| < [7|f].

Dowdéd. Mamy f <|f|1i—f <|f|, wiec na mocy poprzedniego Faktu [ f < [|f]
oraz — [ f < [|f|. Stad | [ f| < [|f. ©

Dla ograniczonej funkcji f : I — R wprowadzmy oznaczenie

If1l = Sup]lf(l’)l-

z€la,b

7.14. Lemat. Dla dowolnych podziatéw P i Q) odcinka |a,b] i ograniczonej funkcji
f na tym przedziale zachodzi niercuno$é

S(f,P) < S(f,PUQ)+2[fI(IQ —2)d(P),

gdzie |Q| oznacza liczbe elementéw Q.

Dowdéd. Lematu dowodzi sie tatwo przez indukcje ze wzgledu na liczebno$é podzi-
atlu Q. O

7.15. Twierdzenie. Niech f € R([a,b]). Jesli {P,} jest ciggiem podziatdw odcinka
[a,b], takim zZe lim, . 6(P,) =0, to

S(fP)— | f. S(fP)— | f

[a,b] (a,b]

Dowdd. Niech e > 0. Istnieje podzial @ odcinka [a, ], taki ze

S(£,Q) < [ ]f+€-
a,b
Niech N bedzie tak duze, aby dla n > N byto

3
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Na mocy Lematu 7.14
S(f,Pa) < S(f, Pau Q) + 2| FI|QI6(Pn)
< f =+ 2e,
[a.0]

co dowodzi pierwszej réwnosci granicznej. Z niej wynika juz druga. Rzeczywiscie,

lim (. P,) = tim ~S(-1.2) == [ (n=[ 1

n—oo n—oo [a,b] [a,b]
co konczy dowdéd. O

Niech bedzie dana funkcja ograniczona f : [a, 0] — R i podzial P = {2;}*_; tego
odcinka. Niech
c=(c1,C9, ..., C), ¢ € [xj_1, x4

Wtedy sume
k
S(f.Pe) = fle)(a; — xj-)
j=1

nazywamy suma riemannowska funkcji f wyznaczona przez podzial P i ciag
punktow posrednich c.

7.16. Wniosek. Niech f € R([a,b]).Jesli P, jest ciggiem podziatow o Srednicach
zbieznych do zera, to sumy riemannowskie S(f, P,,cn) dazq do calki z funkcji f.

Dowdéd. Latwo zauwazy¢, ze dla kazdego n
S(f, Pa) < S(f, Py en) < S(f, Pu),

wiec wystarczy zastosowaé poprzedni lemat i twierdzenie o trzech ciagach. O

7.17. Przyklad. Scatkujmy funkcje cosinus na odcinku [0,a]. Funkcja ta jako
ciggta jest catkowalna, wiec mozna to zrobi¢ za pomoca sum riemannowskich. Niech

P, — {’f_} |
n ) k=0

@ i ktadac ¢, = (¢x)g, mamy

Wybierajac ¢, =

Sn = S(cos, Py, cpn) = Z gCOS(l{Z -1)- g
n n

k=1
n—1 A (n—1)a
a a a Sl 5 COS o
= — E cosk— = —- — ,
n n n SN o—
k=0 2n

skad, jak tatwo widac,

n—o0

a
. . a a )
/ cosxdr = lim Sn:251n§cos§:sma.
0
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7.18. Przyktad. Obliczmy catke foa xPdx dla p > 0. Funkcja jest ciagla, wiec
catkowalna. Jak wyzej, postuzymy sie sumami Riemanna. Niech P, i ¢, beda jak
w poprzednim przyktadzie. Wtedy

n p p+1 T n ]
_ a k _ @ kp<__ p+1 E:k:lk
S, = —| —a) = =Pt ==
n\n np+1 np+1

k=1 k=1

Aby znalez¢ granice ciagu

an > ki K7

bn npt1
skorzystamy z twierdzenia Stolza. Ciag {b,} jest oczywiscie §ciSle monotonicznie
rozbiezny do nieskonczonosci, a ponadto

al n+1)° 1 1/n
- = ( ) =({1+-)"- 1/ :
b,  (n+4 1)ptl — npprtl n’ (L4 )pft—1
Jako ze ( Ly
14+t g
li i =—aPt _=p+1
0o 1/n dz" =P+ 1
widzimy ze
. ap 1
lim — = ——

1 ostatecznie

Dla a > b oznaczmy

/ab f(x)de = — baf(:c)dx.

Nietrudno sprawdzi¢, ze dla dowolnych a,b,c € R

b c b
[r=lofs
Nie tylko funkcje ciagte sa catkowalne.
7.19. Fakt. Kazda funkcja monotoniczna na przedziale [a,b] jest catkowalna.
Dowdd. Niech f bedzie monotoniczna i niestata. Wtedy f(a) # f(b). Niech e > 0
i niech P bedzie podzialem odcinka [a, b] o $rednicy
€

)(P) < ———.

£ (b) — f(a)]

Mamy wéwczas

Qf, P) < D If (@) = flap-n)l(ax — a51) < S(P)FO) = fla)| =,

k=1
co pociaga nasza teze. [
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7.20. Przyklad. Niech f bedzie funkcja na [0, 1] zdefiniowana tak:
11
flz) = {‘Lm z € (o ws
a, x=0,
gdzie a, jest ciggiem monotonicznie zbieznym do a. Funkcja f jest nieciagla w
nieskonczonej ilosci punktow, ale jest monotoniczna, wiec catkowalna.

O innych nieciggtych funkcjach catkowalnych moéwi kolejne twierdzenie.

7.21. Twierdzenie. Jesli ograniczona funkcja f na przedziale domknietym ma
skonczenie wiele punktow niecigglosci, to jest catkowalna.
Dowdéd. Zatozmy, ze f: [a,b] — R jest taka funkcja. Niech

a<c <c<--<c<b

bedg jej punktami niecigglosci. Niech ¢ > 0. Wybierzmy roztaczne odcinki I, tak
aby ¢, € I} i odcinki dopetiajace Ji. Zatozmy ponadto, ze

g
A p—
2 I < g

Zauwazmy, ze na kazdym z odcinkéw Jp nasza funkcja jest catkowalna, bo jest
ciggta. Zatem dla kazdego k istnieje rozbicie J, = UJy na rozlaczne odcinki
domkniete, takie ze

S s (f@) - f(y) < =M

Jel z,y€Jp 2(b - a)‘

Rodzina odcinkéw {1y} U{I); }r definiuje podzial P odcinka [a, b]. Dla tego podzi-
atu

AF.P) =Y (sup (F@) = £u) + D ( sup (f(@) = F) <=

x,y€ly z,YyE€Jk1
co wynika z definicji podzialu P. Zatem f jest calkowalna. O

Przechodzimy do badania catki jako funkcji gérnej granicy catkowania.

7.22. Lemat. Jesli f € R([a,b]) i c € [a,b], to funkcja

/ f(t) x € |a,b),

Dowdéd. Niech z,y beda punktami odcinka [a, b]. Wtedy

ror- = [ 0w [ o= [ o

jest lipschitzowska.



7. Calkowanie 123

wiec
F(z) - F(y)| < | / FOld] < Mz ],
gdzie M = ||f]|. O

7.23. Lemat. Jesli f € R([a,b]) i c € [a,b], to funkcja

/ f(t) x € [a,b],

jest rozniczkowalna w kazdym punkcie xq ciggtosci f. Ponadto

F'(x0) = f(xo).

Dowéd. Niech € > 0. Poniewaz f jest ciagta w xq, wiec istnieje § > 0, taka ze
|f(z) — f(zo)] <&, 0ile |x — x¢| <. Mamy zatem

F(zo + h})L — F(x0) = ) = %/m:fﬁh (f(t) _ f(lvo)) dt,

xo+h

a wobec

F(x0+h}1—F(xo) ~ Flzo) Si

dla |h| < 0, co konczy dowdd. O

zo+h
0= Feola| < el [ | =<

7 poprzednich dwéch lematéw wynika natychmiast podstawowe twierdzenie rachunku
rozniczkowego 1 catkowego.

7.24. Twierdzenie. Jesli f € C([a,b]), to funkcja

/axf x € |a, b,

jest rozniczkowalna w przedzzale (a,b) oraz

S roa=gw), e @),

Zatem F' jest pierwotng f w (a, b).

F'(z) =

Mozna udowodni¢ troche wiecej.

7.25. Whniosek. Jesli f € C([a,b]), to istnieje funkcja rozniczkowalna G : R — R,
taka Ze G'(x) = f(x) dla x € [a,b].

Dowéd. Funkcje f mozna rozszerzy¢ do funkcji g ciaglej na calej prostej, ktadac

gla), z<a,

g(x) = f(z), we€lab],
f(b), x>b.
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Niech N
G(z) = / g(t)dt, z € R.

Na mocy twierdzenia funkcja G jest rézniczkowalna na caltej prostej i G'(z) = g(z)
dla x € R. W szczegdblnosci

G'(z) = f(x), x € [a,b].

7.26. Wniosek. Jesli f € C([a,b]), F € C([a,b]) oraz F'(x) = f(z) dla x € (a,b),
to

b
/ f(t)dt = F(b) — F(a).

/ f(t) x € |a,b].

Wtedy (F — Fp)' = 0 na (a b), wiec F'— Fy = ¢ na (a,b), a przez ciagtosé takze na
koncach przedziatu. Stad

b
/ f(t)dt = Fy(b) — Fo(a) = (Fo(b) + ¢) — (Fola) + ¢) = F(b) — F(a),

tak jak chcielismy. O

Dowdéd. Niech

7.27. Przyklad. a) Mamy (sinx) = cosz, wiec
b

/ cosxdr =sinb — sina.

b) Mamy (zP™!) = (p + 1)2”, wiec
b
1
Pdy = ——— (b1 — P! b>0 —1.
/axac Pl al),  ab>0, p#

¢) Niech

oo
= Zanx”, lz| <7,
n=0

gdzie r > 0 jest promieniem zbieznosci. Wiemy, ze

(e o]

F(x) = Z Gn_gn+1, lz| <,
n

:0n+1

jest pierwotna f. Wobec tego dla [a,b] C (—r,7)

/ f(t)dt = F(b) — F(a).

/aZanx dx—zn_:l(b”“ a™th) %an/ax dz.

czyli
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7.28. Fakt. Jesli f,g € R([a,b]), to fg € R([a,b]).

Dowdd. Poniewaz

f(@)g(x) = f(w)gly) < llglllf (@) = FW+ 1 flllg(z) — g()l,
wiec dla kazdego podziatu P
Q(fg,P)—S(fg, P) < lglI2(f, P) + [ flI2(g, P),

co pozwala wnioskowaé, ze iloczyn fg jest catkowalny, pod warunkiem ze obie
funkcje f i g sa catkowalne. O

7.29. Twierdzenie (catkowanie przez czesci). Jesli f,g : (a —e,b+¢) — R sg
rozniczkowalne i ', g" € R([a, b)), to

b b b
/ f(2)g (2)dz = f(2)g(x)| — / F(@)g(x)da,

gdzie

Dowé6d. Wiemy, ze
(f(2)g(z)) = fl(x)g(z) + f(2)g'(x), we(a—cb+te),

wiec catkujac obie strony i korzystajac z podstawowego twierdzenia, otrzymujemy

F)9() — fla)g(a) = / f(@)g(x)dz + / f(2)g (x)dz,

skad juz natychmiast wynika wzér na catkowanie przez czesci. 0O

7.30. Przyklad. Mamy

/logtdt:/ t'logtdt = tlogt —/ dt = t(logt — 1)

Zauwazmy tez, ze rzeczywiscie funkcja x — z(logx — 1) jest pierwotna funkcji
logarytmicznej,

T

x
a a

7.31. Przyktad. Niech m,n € Z i niech m # 0. Wtedy

2

2
n
+ — cos nx cos mx dx
0 m Jo

21
Inm = / sin nx sin mx dx = n cos x sin mx
0
2 n
= (—)2/ sinma sinnz dr = (— )L,
0 m
wiee (1= (7)) 1nm = 0, skad
(732 I = {o, [n| # |ml,

m, |n| = [ml.
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7.33. Lemat. Niech I,, = foﬂ/z sin” x dx. Wtedy
n—1/2\ n+1/2\7"
(7.34) 1%:( / )_ IWZ( / ) |

n 2’ n
Dowdéd. Oba wzory wynikaja tatwo z zaleznosci rekurencyjnej

n+1
n+2

ktora bierze sie z catkowania przez czesci:

(7.35) Lips = I,

7'('/2 7r/2
Lo = / sin"" z dr = —/ sin"t! x(cos x) dx
0 0

w/2
=—(n+ 1)/ sin” z cos” zdx = —(n + 1)1, + (n + 1) [40.
0

Zauwazmy, ze ze wzgledu na to, ze sin0 = cos /2 = 0, przyrosty wartosci funkceji
we wzorze na calkowanie przez czesci znikaja. O

7Z zaleznosci (7.35) wyplywa nastepujacy wniosek.

7.36. Wniosek. Niech I, = fOW/Q sin” x dx. Wtedy

I,
lim —2% = 1.
n—00 lop 4]
Dowdd. Rzeczywiscie, jak tatwo widzieé
2n +1
Ippi1 < Iopy < Iopp 1 = 5 Iyny,
n
skad
_[2n 2n

1< < :
- 12n+1 —2n+1

co pozwala wyprowadzi¢ naszg teze za pomoca lematu o trzech ciggach. O

7.37. Wniosek (wzér Wallisa). Jest

—1/2\* 1
lim n(n /> = —.
n—oo n ™

Dowdéd. Na mocy Lematu 7.33

1 1/n—1/2\(n+1/2\ n—1/2\Ips1
- Z2n4l 1/2 Z2n+4l
T 2< n >( n )]zn (n+1/2) n Iy,

wiec nasza teza plynie wprost z Wniosku 7.36. O
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1 1
log(1+—) <—.
n n

Postaramy sie teraz wzmocnié¢ to oszacowanie, zmniejszajac nieco jego prawg stro-
ne. Dla 0 < 2 < 1 mamy

Pamietamy, ze

0 n+1 " .~ "
log(1 log(1 — —
og(l+ z) ; , og( x) o
wiec
1 =
I ; ok
2 an= ok 225
< 2x + gw Zx =2r + m
k=0
Podstawiajac = 5.1, otrzymujemy
1 1 1
7.38 1 14— < 1 :
(7.38) og< +n) n+%( +12n(n—|—1))

I jeszcze jedna retrospekcja. Pamietamy, ze

n
n
n!>(—>, n € N.
e

Za chwile uzyskamy znacznie subtelniejsze przyblizenia.

7.39. Twierdzenie (wzér Stirlinga) Dla kaz'dego neN

V2m < < V2 612n.

+1/2

, . lem
Dowdd. Niech s, = =55, Mamy

log o (n+1/2)log(1+1/n) —1>0,

Sn+1
wiec ciag {s,} jest Scisle malejacy. Jako ciag liczb dodatnich ma granice s > 0. Te
sama granice ma ciag t, = sne_ﬁ, ktory z kolei jest scisle rosnacy, bo na mocy
(7.38)

log tzl =(n+1/2)log(l1+1/n) — 1+ ﬁ( —11—1 :L) <0,
co pokazuje, ze dla kazdego n € N

sne_ﬁ < 8§ < 8.
W szczegdlnosei s > 0. Pozostaje obliczy¢ granice s. W tym celu zauwazmy, ze

§2 (n!)222n+1/2 \/§

n

; - <2n)ln1/2 o nl/2 (n—$/2)7
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wiec na mocy wzoru Wallisa
2

s = lim >n — V2,

n—0o0 Sop
co byto do okazania. O

I jeszcze jedno zastosowanie calkowania przez czeSci — reszta Taylora w postaci
catkowej.

7.40. Twierdzenie. Niech f bedzie funkcjq rozniczkowalng n razy w sposob ciggty
w otoczeniu punktu a € R. Wowczas dla dostatecznie matych h jej reszta Taylora
wYraza sie wzorem
1 h
Ru(h) = )‘/( — 4T ) (0 4 )t

Dowdéd. Niech S,(h) oznacza prawa strone wzoru. Gdy n = 1

/ f(a+t)dt = f(a+h) — f(a) = Ry(h).

Przypusémy przez indukcje, ze S,,(h) = R, (h). Wtedy, catkujac przez czesci, widz-
imy, ze
h

Susa(h) = b=+ 8] + o= [ =0y
1

= ——h" f(a) + Ro(h) = Rosa(h),

1

czego nalezato dowies¢. O

A teraz wzor na catkowanie przez podstawienie.

7.41. Twierdzenie. Nz'ech u:(a—e,b+e) — R bedzie rézniczkowalna w sposob
ciggty. Jesli f € C(u([a,b])), to

[ s

Dowd6d. Niech u([a,b]) = [¢,d] iniech F' : (c—¢, d+¢) bedzie funkcja rézniczkowalna,
taka, ze f'(y) = f(y) dla y € [c,d]. Wtedy
d

P (ule)) = F(u(z))u' (2) = f(u(z)'(2)

dla z € [a, b], wiec

b u(b)
| e = )~ Fa@) = [y

co nalezato pokaza¢. O
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7.42. Przyklad. Rozwazmy caltke

I /5 dzx |
o Va2 +2bx+c
przy zalozeniu, ze ocinek [, 3] lezy w obszarze, gdzie 2 + 2bx + ¢ > 0. Stosujac

podstawienie
2

u=va?+2bxr+c+uzx, x:%,

skad
du b+u

dr  u—=x

widzimy, ze

wB)  du VB F2B+etB g
1= / - / .
u(a) b+u Va2+2ba+cta b+u

Podstawienie to, zwane podstawieniem Eulera, sprowadza catke z niewymiernoscia
drugiego stopnia do calki z funkcji wymierne;j.

Przechodzimy do twierdzen o wartosci sredniej dla calek.

7.43. Twierdzenie. Jesli f € C([a,b]), to istnieje ¢ € (a,b), takie ze
b
[t = r@e - a)

Dowdéd. Niech F' € C([a,b]) bedzie pierwotna f na przedziale (a,b). Wtedy na
mocy twierdzenia podstawowego i twierdzenia Lagrange’a

| #a)i = F®) - F@) = Pt -0 = 100~ o
dla pewnego ¢ € (a,b). O

7.44. Twierdzenie. Niech f,g € C([a,b]) i niech g > 0. Wtedy istnieje ¢ € (a,b),
takie ze

[ st = 5@ [ gy

Dowdéd. Funkcja f spelnia nieréwnosci m < f < M, gdzie m i M sa odpowiednio
jej najmniejsza i najwieksza waroscia w [a,b]. Stad mg(z) < f(z)g(x) < Mg(x)
dla x € [a,b] i

b
mA < / f(x)g(x)dx < MA,
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gdzie A = fab g(x)dz. Funkcja A- f jest ciagla, a jej najmniejsza wartoscig jest Am,
najwieksza za$ AM. Istnieje wiec ¢ € [a, b], takie ze

b
A1) = [ Fa)gla)da,
co juz jest niemal nasza teza. Pozostaje jeszcze wykazaé, ze ¢ mozna wybraé z
wnetrza odcinka. Jesli A = 0 lub f jest stala, jest to oczywiste. Jesli zas zaden z

tych warunkéw nie jest spelniony, tom < f(c¢) < M. Niech m = f(dy) i M = f(ds).
Na mocy wlasnosci Darboux istnieje punkt

¢ € (min{dl,dg},maX{dl,d2}>> C (a,b),

taki ze f(c1) = f(¢). O

Zwrdéémy uwage, ze pierwsze twierdzenie o wartosci $redniej jest szczegdlnym
przypadkiem drugiego, wtedy gdy g(x) =1 dla = € [a, b].
I jeszcze trzecie twierdzenie o wartosci Sredniej.

7.45. Twierdzenie. Jesli f € C([a,b], a g : (a —e,b+e) — R jest rosngca i
rézniczkowalna w sposdb ciggly, to istnieje ¢ € (a,b), takie ze

b c b
| agads=gta) [ ot gt) [ sl
Dowdéd. Niech F': (a —e,b+ ¢) bedzie pierwotna f na przedziale [a, b]. Wtedy

/mew=/ﬁwwmwﬁvM@

mozemy zastosowaé drugie twierdzenie o wartosci $redniej, by

a skoro ¢ > 0,
b), takie ze

znalezé ¢ € (a,

i po skorzystaniu z réwnosci

ﬂ@—ﬂwz/vuw% F(b)— F(c)= | fla)da

otrzymac teze. O
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Przechodzimy do ostatniego tematu tego rozdziatu, funkcji o wahaniu skonc-
zonym. Niech bedzie dana funkcja f : [a,b] — R i podzial P = {x;}}_, tego
odcinka. Liczbe

VAL, P) =) |fze) = flar)|

nazywamy wahaniem czeSciowym funkcji f wyznaczonym przez podzial P,
natomiast kres gérny wahan czesciowych

Vo (f) = sup V' (f, P)
pep

wahaniem catkowitym f. Jesli VP(f) < oo, to méwimy, ze funkcja f ma wa-
hanie skoriczone (lub ograniczone) na przedziale [a, b].

7.46. Lemat. Funkcja lipschitzowska f : [a,b] — R ma wahanie skoriczone i
V(f) < L(b—a),

gdzie L jest statq z warunku Lipschitza. W szczegdlnosci funkcja g ciggta na [a, b]
i majgca pochodng ograniczong w (a,b) jest funkcjg o wahaniu skoriczonym i

V2 (9) < gl - a).

Dowdd. Niech P = {z} bedzie podziatem [a, b]. Jako ze | f(z) — f(y)| < L|z—y]
dla dowolnych z,y € [a, b], mamy

VI P) = |f () = flae)| < LD (ar — 25-1) = L(b— a).

Zatem VP(f) < L(b—a). O

Ale nie tylko funkcja ciaglte moga mie¢ wahanie skonczone.
7.47. Lemat. Jesli [ : [a,b] — R jest monotoniczna, to V2(f) = |f(b) — f(a)|.

Dowdéd. Niech P = {x} bedzie podziatem [a,b]. Wtedy

VA P) = | f(zx) = flzian)| = 1£(b) = f(a)l,

bo wszystkie wyrazy sumy sa jednego znaku. Zatem wszystkie wahania cze$ciowe
sa sobie réwne i V2(f) = |f(b) — f(a)|. O

7.48. Przyklad. A oto przyktad funkcji ciagtej na odcinku [0, 1] o wahaniu nieskoric-
zonym. Niech
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Niech z;, = % Wtedy

1) Fa) = 30| S - (22: |

wige V' (f) = oo.

Nietrudno sprawdzi¢, korzystajac z definicji wahania, ze jesli a < ¢ < b i funkcja
f :[a,b] — R ma wahanie skonczone, to

(7.49) Vi) + V2N = Vi),
7.50. Fakt. Jesli f : [a,b] — R ma wahanie skoriczone, to jest catkowalna.

Dowdéd. Dla danego ¢ niech P bedzie podziatem odcinka o $rednicy § < £, gdzie
v =V2(f). Wtedy

n

Qf,P)=>_ sup  (f(x) = () (@ —251)

<8N Vi () <VI(f) <=
k=1

dzieki addytywnosci wahania (7.49). O

7.51. Twierdzenie. Niech f : (a —€,b+ €) — R bedzie funkcjq rozniczkowalng i
niech " € R([a,b]). Wtedy

VA(f) = / 1 (@)]de.

Dowdéd. Niech € > 0. Niech 6 > 0, bedzie tak mata, by dla kazdego podziatu
P = {z;} odcinka [a, b] o §rednicy 6(P) < ¢ i kazdego ciagu punktéw posrednich c
byto

< E.

S(f]. Pc) - / ' (@))de

Wtedy takze na mocy twierdzenia Lagrange’a

VaUf P) = D1 (ws) = fl)

= Z |f'(e)(xj —xj-1) = S(|f], P, c)
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VAP = [ 17 @)

Vo(f) = sup V(f, P),

0(P)<o

wiec f ma wahanie skoriczone i Vb(f) = ff |f/(z)|dz. O

i w takim razie

<e€

dla 6(P) < 6. Ale

Méwimy, ze krzywa y = f(x), gdzie a < x < b, jest prostowalna, jesli
Lo(f) = sup Lg(f, P) < o0,
Pep

gdzie

Lo(f, P Z! zj, f(25)) = (@1, f(25-1))]|

. Z \/ — x5 1)? 4 (flzy) — fz21))?

jest dtugoscia tamanej wpisanej w krzywa w punktach wyznaczonych przez podzial
P. jedli krzywa jest prostowalna, to wielkos¢ L°(f) nazywamy jej dtugoscia.
Jak tatwo zauwazy¢,

Vab(f) < Lg(f) < szb<f) +b— a,

a wiec krzywa y = f(z) jest prostowalna, wtedy i tylko wtedy gdy funkcja f ma
wahanie ograniczone.

7.52. Twierdzenie. Niech f : (a —¢,b+ €) — R bedzie funkcjq rdzniczkowalng i
niech ' € R([a,b]). Wtedy krzywa y = f(x) jest prostowalna i

- [ Viv TR

Dowdd tego twierdzenia jest tak podobny do dowodu twierdzenia poprzedniego,
ze pozostawimy go do samodzielnego uzupetnienia zainteresowanemu Czytelnikowi.

7.53. Fakt. Jezeli funkcja f : [a,b] — R o wahaniu ograniczonym jest ciggta w
pewnym punkcie ¢, to takze funkcja v(x) = VE(f) jest cigglta w tym punkcie.

Dowdd. Dla zadanego e > 0 niech P = {x;} bedzie podzialem odcinka [a, b],
takim ze V2(f) < V2(f, P)+e. Mozemy zalozy¢, ze ¢ = xx jest jednym z punktéw
podziatu. Niech ¢ < © < x4 i niech @ bedzie podzialem odcinka [c, x], takim ze
VE(f) < VE(f,Q) +e. Niech R =P UQ. Wtedy

VoS PY+VE(£,Q) = ViU B) + 1f () = (o)
< V() +1f(@) = flel,
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wiec na mocy wyboru podziatow P i Q)

V2P + VEF) S VI + 1 f (@) = Fe)] + 2e,
czyli
v(z) —v(e) < [f(x) = fle)] + 28 < 3¢
jesli z jest dostatecznie bliskie ¢, dzieki ciaggtosci f w ¢. Podobnie rozumujemy dla
r<c 0O

7.54. Twierdzenie. Jedli f : [a,b] — R jest funkcjq (cigglta) o wahaniu ogranic-
zonym, to istniejq (ciggte) funkcje rosngee u i v na [a,b], takie Ze f = v — u.

Dowéd. Niech v(z) = VF(f). Wiemy, ze v jest funkcja rosnaca. Pozostaje
wykazaé, ze u = v — f jest tez funkcja rosnaca. W tym celu zauwazmy, ze dla

T <y

fy) = fx) S VI(S) = vly) —v(x),
a wiec u(x) < u(y), co wynika z definicji wahania i (7.49). Jesli f jest ciagla, to,
jak wynika z Faktu 7.53, takze v jest ciagla. Stad i u jest ciagta. O
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Ciag funkcyjny f, : D — R jest zbiezny jednostajnie do f: D — R, jesli

Ves0 Inen anN ||fn - f” <eg,

co zapisujemy przy pomocy podwdjnej strzalki

fn(x):f(x)v reD.

8.1. Uwaga (warunek Cauchy’ego). Ciag funkcyjny f, : D — R jest zbiezny
jednostajnie

Ves0 INeN Vomen [[fo — [l <e.

8.2. Uwaga. Jedli f,(z) = f(z) na D, to dla kazdego x € D jest f,(x) — f(x).

Zatem zbieznosé¢ jednostajna oznacza co$ wiecej niz zbieznos¢ w kazdym punkcie
x 7 osobna. Takg zbieznosé bedziemy nazywaé¢ punktowsq.

8.3. Uwaga. Ciag f, nie jest zbiezny jednostajnie do 0 wtedy i tylko wtedy, gdy
istnieje ciag {z,} C D, taki ze ciag { f,(z,)} nie jest zbiezny do 0.

8.4. Twierdzenie. Granica [ jednostajnie zbieinego ciggu funkcji ciggltych f, na
D jest ciggta w kazdym punkcie xq € D, w ktorym wszystkie funkcje f, sq ciggle.

8.5. Wniosek. Jesli f,, € C([a,b]) i fu(z) = f(x), to f € C([a,b].

—

8.6. Wniosek. Jesli f, € C([a,b]) i fo(x) = f(z), to

—

n—oo
a

b b
/ f(x)dx = lim falz)dz.
8.7. Twierdzenie. Niech f, bedq funkcjami rozniczkowalnymi w sposob ciggly na
(a,b). Jesli ciqg f, jest zbiezny do funkcji f punktowo, a cigg f) zbiezny jednos-
tagnie do funkcji g, to [ jest funkcjq rozniczkowalng i f'(z) = g(x) dla kazdego
x € D. Innymi stowy,

(Jm 50 = fm fi0). zep

Niech f, : D — R. Méwimy, ze szereg funkeyjny >~ fn(z) jest jednostajnie
zbiezny na D, jesli ciag funkcyjny jego sum czesciowych S, (z) = > 7_, fu(x) jest
zbiezny jednostajnie na D.

8.8. Wniosek. Niech f, bedq funkcjami rozniczkowalnymi w sposob ciggly na
(a,b). Jedli szereg > >~ | fn jest zbiezny do funkecji f punktowo, a szereg y | f1,
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zbiezny jednostagnie do funkcji g, to [ jest funkcjg rézniczkowalng i f'(x) = g(z)
dla kazdego x € D. Innymi stowy,

(S aw) =S s eep

8.9. Kryterium (Weierstrass). Niech f, : D — R. Jesli dla kazdego x € D

jest |fu(z)] < an @ X2 a, < oo, to szereg funkcyjny Y .| fo(x) jest zbiezny
jednostajnie.

Méwimy wtedy, ze szereg » - a, jest zbiezna liczbowa majorantg szeregu
funkcyjnego > 7 .
8.10. Wniosek. Szereg potegowy jest zbiezny jednostajnie na kazdym domknietym
przedziale zawartym w jego otwartym przedziale zbieznosci.

8.11. Kryterium (Abel). Niech bedg dane dwa ciggi funkcyjne fn,g, : D —
R. Niech cigg {f.} bedzie monotoniczny. Jezeli f, jest jednostajnie zbieiny do
zera, a szereq Y o, [o(x) ma sumy czeSciowe jednostajnie ograniczone, to szereg
Yoo fu(@)gn(x) jest jednostajnie zbieiny.

8.12. Kryterium (Dirichlet). Niech bedg dane dwa ciqgi funkcyjne fn,gn : D —
R. Niech cigg {fn} bedzie monotoniczny. Jezeli f, jest jednostagnie ograniczony, a
szereq Y - fa(x) jednostajnie zbieiny, to szeregy " | fn(x)gn(x) jest jednostajnie
zbiezny.

8.13. Twierdzenie (Dini). Jesli monotoniczny cigg funkcji cigglych na przedziale
domknietym |a,b] jest zbiezny punktowo do funkcji cigglej, to jest zbiezny jednos-

tajnie.

8.14. Twierdzenie (Weierstrass). Kazda funkcja ciggla na przedziale domknietym
[a, b] jest jednostajng granicq ciggu wielomiandw.

Aby udowodnié¢ to twierdzenie wprowadza sie rodzine wielomiandw:

On(t) = cu(l — tQ)n7

1/n+1/2
Ch = 3 ;
2 n

tak ze f_ll on(t)dt = 1 dla kazdego n € N. Tak zdefiniowane wielomiany maja
nastepujaca wazng wlasnosé. Dla kazdego 0 < § < 1

gdzie

lim Gn(t)dt = 1.

o0 J 1t <s
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Wielomianem Tonelli’ego funkeji f € C([0, 1] nazywamy wielomian

_ / bul — 1) F (1)t

Twierdzenie Weierstrassa wynika z nastepujacego lematu.

8.15. Lemat. Niech f € C([0,1]. Wowczas dla kazdego [a,b] C (0,1)
L)) = flx), 2 elab]

Niech bedzie dana funkcja f : [a,00) — R. Jesli f jest catkowalna na kazdym
przedziale [a, b] i istnieje granica

]_blggo/ Ut

to nazywamy ja calka niewladciwa (pierwszego rodzaju) funkcji f na [a,00) i

oznaczamy
I= / f(x)dx

Analogicznie definiujemy caltke niewtasciwa

/OO f(@)da = lim_ /b F(z)dz

Niech bedzie dana funkcja f : [a,0) — R. Jesli f jest calkowalna na kazdym
przedziale [a,t], gdzie a < t < b, i istnieje granica

I—thm/ f(x

to nazywamy ja calka niewladciwa (drugiego rodzaju) funkcji f na [a,b] i oz-

naczamy
b
]:/ f(z)dx

Analogicznie definiujemy calke niewtasciwa,

/f )z = lim bf()

dla funkeji f calkowalnej na kazdym przedmale [t,b] dla a <t <D.

8.16. Kryterium (poréwnawcze). Niech bedzie dana dodatnia funkcja malejgea
f:[1,00) — R. Wowczas

/oo f(z)dr < 00 <= Zf(n) < 00,

1 n=1

a doktadniej
N N N
> < [ fde <3 ), NeN
n=2 n=1
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8.17. Wniosek. Niech a € R. Szereg Y -, n% jest zbiezny wtedy 1 tylko wtedy,

T

gdy zbiezna jest catka [° 9.

8.18. Uwaga. Catka floo j—i jest zbiezna wtedy i tylko wtedy, gdy o > 1. Calka

! do jest zbiezna wtedy i tylko wtedy, gdy a < 1.

0 z¢

8.19. Lemat (Riemann-Legesgue). Dla kazdej funkcji ciggtej na przedziale |a, b

b
lim [ f(z)sinnzdx =0.

n—oo

A oto calki niewtasciwe, ktére warto zapamietaé. Pierwsza z nich to catka Pois-

sona
o

2 NZs

/ e Vdr = —.
0

Druga to catka Hilberta

Jest jeszcze catka Eulera
I'(z) = / t" te~tdt, x>0,
0

ktora definiuje funkcje zwana gamma Eulera. Ta catka jest sumg dwdch catek
niewlasciwych I'(x) = 'y (z) + [y(z), gdzie

1 o0
[(x) = / t" e tdt, [o(x) = / t" e tdt.
0 1
Funkcja I" jest ciggla i ma nastepujacg wlasnosc
L(z+1) =al(z), x>0,

skad tatwo wynika, ze
['(n)=(n—1), n € N.

F(l) :/ e dr = ﬁ
2 ; 2

Wiemy, ze funkcja rézniczkowalna w danym punkcie jest tez w tym punkcie
ciggta. Latwo podaé przyktad funkcji ciaglej, ale nierézniczkowalnej w izolowanych
punktach. Taka funkcja jest np.

u(z) = dist(x, Z).

Ponadto

Jest to funkcja ciggla (kawatkami liniowa) na calej prostej, ale nier6zniczkowalna
w punktach z, = 7. Okazuje sig, ze istnieja funkcje ciagte, ktére nie maja nigdzie
pochodne;j.
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8.20. Fakt (van der Waerden). Niech
up(z) = 4 Fu(4bz)

dla k € NU{0}. Funkcja zadana szeregiem
fl@)=> w(x), z€R,
k=0
jest ciggta. Nie jest jednak rozniczkowalna w zZadnym punkcie.

Pierwszy przyklad funkcji cigglej i nigdzie nie rézniczkowalnej pochodzi od
Weierstrassa i jest dosé¢ skomplikowany. Przyktad van der Waerdena korzysta z tego
samego pomystu, ale jest znacznie prostszy technicznie. Na cze$¢ autora pomystu
skonstruowang wyzej funkcje nazywa sie czasem pila Weierstrassa.



