
Analiza B

Paweª Gªowacki

1. INDUKCJA matematyczna i nierówno±ci

Poj¦cie1 liczby rzeczywistej uwa»a¢ b¦dziemy za intuicyjnie oczywiste. Tym niem-
niej celowe wydaje si¦ przypomnienie i ugruntowanie niektórych fundamentalnych
wªasno±ci liczb rzeczywistych.
W zbiorze liczb rzeczywistych, który b¦dziemy oznacza¢ przez R, na szczególn¡

uwag¦ zasªuguj¡ liczby wymierne, czyli liczby postaci p
q
, gdzie p i q s¡ liczbami

caªkowitymi i q 6= 0. B¦dziemy u»ywa¢ oznacze« N, Z i Q odpowiednio na zbiory
liczb naturalnych, caªkowitych i wymiernych.
Geometrycznie wyobra»amy sobie liczby rzeczywiste jako o± liczbow¡, której

punktem pocz¡tkowym jest 0. Dlatego R cz¦sto nazywamy prost¡ rzeczywist¡.
Z algebraicznego punktu widzenia R stanowi ciaªo, bo okre±lone s¡ w nim dwa

dziaªania
(x, y) → x + y, (x, y) → x · y,

zwane odpowiednio dodawaniem i mno»eniem, o nast¦puj¡cych wªasno±ciach. Do-
dawanie jest ª¡czne i przemienne, a elementem neutralnym jest liczba 0. Ponadto,
ka»dy element x ∈ R posiada element przeciwny. Mno»enie jest ª¡czne i przemi-
enne, a elementem neutralnym jest jedno±¢. Ró»ne od zera elementy R posiadaj¡
element odwrotny. Wreszcie mno»enie jest rozdzielne wzgl¦dem dodawania.
�atwo zauwa»y¢, »e wszystkie powy»sze wªasno±ci posiadaj¡ tak»e liczby wy-

mierne. Zatem i Q jest ciaªem. Nie s¡ natomiast ciaªami ani Z, ani N.
Zbiór liczb rzeczywistych jest liniowo uporz¡dkowany. Oznacza to, »e istnieje w

nim relacja porz¡dku ≤, taka »e dla dowolnych x, y ∈ R jest x ≤ y lub y ≤ x.
Zbiór liczb wymiernych jest zbiorem przeliczalnym, czyli równolicznym ze zbio-

rem liczb naturalnych. Ponadto jest g¦stym podzbiorem R. Rozumiemy przez to,
»e dla dla ka»dych rzeczywistych x < y, istnieje liczba wymierna w, taka »e

x < w < y.

Innymi sªowy, ka»dy otwarty przedziaª prostej rzeczywistej zawiera przynajmniej
jedn¡ liczb¦ wymiern¡. Oczywi±cie st¡d natychmiast wynika, »e jest ich w istocie
w ka»dym przedziale niesko«czenie wiele.
Ciaªo liczb rzeczywistych posiada istotn¡ wªasno±¢, której nie ma ciaªo liczb

wymiernych. Otó» w±ród liczb ograniczaj¡cych dany niepusty zbiór E ⊂ R od góry
1Serdecznie dzi¦kuj¦ Pani Agnieszce Kazun za trud wªo»ony w przepisanie i redakcj¦ znacznej

cz¦±ci niniejszego skryptu



2 Analiza B

(o ile takie istniej¡) jest zawsze liczba najmniejsza. Nazywa si¦ j¡ kresem górnym
zbioru E, a wypowiedzian¡ wªasno±¢ { wªasno±ci¡ kresu lub aksjomatem ci¡gªo±ci.
B¦dziemy o tym mówi¢ bardziej szczegóªowo w rozdziale 2.
Przyst¦pujemy obecnie do wªa±ciwego wykªadu. Najpierw omówimy zasad¦ in-

dukcji matematycznej. Indukcja matematyczna jest metod¡ dowodzenia wªasno±ci
liczb naturalnych.

De�nicja. Niech T (n) orzeka pewn¡ wªasno±¢ liczby naturalnej n. Zasada in-
dukcji matematycznej mówi, »e je±li

∃n0 ∈ N : T (n0),

oraz
∀n ≥ n0 : T (n) ⇒ T (n + 1),

to prawdziwe jest twierdzenie

∀n ≥ n0 : T (n).

Tak wi¦c dowód indukcyjny przebiega w dwóch etapach. Pierwszy polega na
sprawdzeniu warunku pocz¡tkowego, drugi nazwiemy krokiem indukcyjnym. Zilus-
trujmy teraz zasad¦ indukcji matematycznej.
1.1. Twierdzenie (nierówno±¢ Bernoulliego). Dla ka»ego n ≥ 1 i ka»dego x ≥ −1
zachodzi nierówno±¢

(1 + x)n ≥ 1 + nx.

Dowód . (i) Sprawdzamy warunek pocz¡tkowy dla n0 = 1:

(1 + x) ≥ 1 + x.

(ii) Zaªó»my, »e nierówno±¢ (1 + x)n ≥ 1 + nx jest prawdziwa dla pewnego n ≥ 1.
Chcemy pokaza¢, »e wtedy prawdziwa jest równie» nierówno±¢

(1 + x)n+1 ≥ 1 + (n + 1)x.

Istotnie, mno»¡c obie strony T (n) przez nieujemne wyra»enie (1+x), otrzymujemy

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x.

Tym samym dowód zostaª zako«czony. tu
�redni¡ artymetyczn¡ liczb a1, a2, a3, . . . , an ∈ R nazywamy wyra»enie

A =
a1 + a2 + a3 + . . . + an

n
;

±redni¡ geometryczn¡ liczb a1, a2, a3, . . . , an ≥ 0 nazywamy wyra»enie

G = n
√

a1a2a3 . . . an;

±redni¡ harmoniczn¡ liczb a1, a2, a3, . . . , an > 0 nazywamy wyra»enie

H =
n

1
a1

+ 1
a2

+ 1
a3

+ . . . + 1
an

.
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Umówmy si¦, »e przez

A = A(x1, x2, . . . , xn), G = G(x1, x2, . . . , xn), H = H(x1, x2, . . . , xn)

bedziemy oznacza¢ odpowiednio ±redni¡ arytmetyczna, geometryczn¡ i harmoni-
czn¡ liczb x1, x2, x3, . . . , xn.
Nast¦puj¡cy lemat wykorzystamy w dowodzie kolejnego twierdzenia.

1.2. Lemat. Niech b¦d¡ dane liczby a1, a2, . . . , an ≥ 0 takie, »e a1 < A < an, gdzie
A = A(a1, a2, . . . , an). Wtedy

G(a1, a2, . . . , an) < G(A, a2, a3, . . . , an−1, (a1 + an − A)).

Dowód . Trzeba udowodni¢ nierówno±¢

(a1a2 . . . an)
1
n < (Aa2a3 . . . an−1(a1 + an − A))

1
n .

Podnosz¡c obie strony do pot¦gi n, a nast¦pnie dziel¡c je przez dodatni¡ liczb¦
a2a3 . . . an−1, otrzymujemy nierówno±¢ równowa»n¡

a1an < A(a1 + an − A),

wi¦c wystarczy pokaza¢, »e

A2 − A(a1 + an) + a1an < 0.

W tym celu rozwa»my funkcj¦ kwadratow¡

f(x) = x2 − x(a1 + an) + a1an.

Wyró»nik równania f(x) = 0 wynosi

∆ = (a1 + an)2 − 4a1an = (a1 − an)2,

zatem √
∆ = |a1 − an| = an − a1,

bo a1 < an, a st¡d dostajemy, »e pierwiastkami funkcji f s¡ liczby a1 i an. Poniewa»
wykresem funkcji f jest parabola skierowana ramionami do góry i a1 < A < an,
wi¦c f(A) < 0, co ko«czy dowód lematu. tu

1.3. Twierdzenie. Je±li a1, a2, a3, . . . , an ≥ 0, to ±rednia arytmetyczna tych liczb
jest nie mniejsza od ich ±redniej geometrycznej, czyli

(a1a2a3 . . . an)
1
n ≤ a1 + a2 + a3 + . . . + an

n
,

przy czym równo±¢ zachodzi, wtedy i tylko wtedy gdy

a1 = a2 = a3 = . . . = an.

Dowód . Je±li a1 = a2 = a3 = . . . = an, to oczywi±cie zachodzi równo±¢ ±rednich
arymetycznej i geometrycznej tych liczb. Trzeba zatem pokaza¢, »e je±li co najm-
niej dwie spo±ród wszystkich liczb ak, k = 1, 2, . . . , n, s¡ ró»ne, to zachodzi ostra
nierówno±¢

G(a1, . . . , an) < A(a1, . . . , an).
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Zauwa»my, »e je±li ak = 0 dla pewnego k ∈ {1, 2, . . . , n} , to ±rednia geometryczna
jest równa zero i oczywi±cie jest wtedy istotnie mniejsza od ±redniej arytmetycznej
tych liczb. Wówczas bowiem ±rednia arytmetyczna jest dodatnia, gdy» nie wszystkie
wyrazy ak mog¡ by¢ zerami. Przyjmijmy wi¦c, »e wszystkie liczby ak s¡ dadatnie.
Dowodzimy naszej nierówno±ci przez indukcj¦ ze wzgl¦du na n.
(i) Warunek pocz¡tkowy. Je±li a, b > 0 s¡ ró»ne, to

√
a 6=

√
b wi¦c

(
√

a−
√

b)2 > 0,

sk¡d
a + b > 2

√
a
√

b,

czyli
√

ab <
a + b

2
.

(ii) Krok indukcyjny. Zaªó»my, »e nasza teza jest prawdziwa dla ka»dych n ≥ 2
liczb dodatnich. Chcemy wywnioskowa¢ jej prawdziwo±¢ dla dowolnych n + 1 liczb
dodatnich, czyli wzór

(a1a2 . . . an+1)
1

n+1 <
1

n + 1
(a1 + a2 + . . . an+1)

dla a1, a2, . . . , an+1 > 0, gdzie przynajmniej dwie z nich s¡ ró»ne. Niech A oz-
nacza ±redni¡ arytmetyczn¡ liczb a1, a2, . . . , an+1. Zmieniaj¡c ewentualnie numer-
acj¦, mo»emy przyj¡¢, »e a1 < A < an+1. Zde�niujmy nowy ci¡g n + 1 liczb w
nast¦puj¡cy sposób:

bk =

 A dla k = 1;
ak dla 1 < k ≤ n;
a1 + an+1 − A dla k = n.

Oczywi±cie wtedy
A(b1, b2, . . . , bn+1) = A

oraz na mocy Lematu 1.2

G(a1, a2, . . . , an+1) < G(b1, b2, . . . , bn+1).

Wystarczy wi¦c pokaza¢, »e G(b1, b2, . . . , bn+1) ≤ A. Mamy

A = A(b1, b2, . . . , bn+1) =
1

n + 1
(b1 + b2 + . . . + bn+1)

=
1

n + 1
(A + b2 + . . . + bn+1),

czyli (
1− 1

n + 1

)
A =

1

n + 1
(b2 + . . . + bn+1),

a st¡d (po pomno»eniu obu stron przez n+1
n
)

A =
1

n
(b2 + . . . + bn+1).

Korzystaj¡c z zaªo»enia indukcyjnego, dostajemy, »e

A > (b2b3 . . . bn+1)
1
n ,
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sk¡d
An+1 = b1A

n > b1b2 . . . bn+1,

czyli
A > G(b1, b2, . . . , bn+1).

Tym samym dowód zostaª zako«czony. tu

1.4. Twierdzenie (nierówno±¢ Bernoulliego). Dla liczby wymiernej α ≥ 1 i dowol-
nego x ≥ −1 zachodzi nast¦puj¡ca nierówno±¢

(1 + x)α ≥ 1 + αx.

Dowód . Poniewa» dla α = 1 nierówno±¢ jest oczywi±cie speªniona, zaªó»my, »e
α = p

q
, gdzie p > q oraz p, q ∈ N. Nasza nierówno±¢ przyjmuje zatem posta¢

(1 + x)
p
q ≥ 1 +

p

q
x.

Bez straty ogólno±ci mo»emy przyj¡¢, »e 1 + p
q
x ≥ 0, bo w przeciwnym wypadku

nierówno±¢ nie wymaga uzasadnienia. Podnosz¡c obie strony do pot¦gi q
p
, dosta-

jemy nierówno±¢

(1 + x) ≥
[(

1 +
p

q
x
)q] 1

p

i jej wystarczy dowie±¢. Rozpatrzmy ci¡g p dodatnich liczb, z których q jest równych
1 + p

q
x, a pozostaªe p− q to jedynki. �rednia arytmetyczna tych liczb wynosi

q · (1 + p
q
x) + (p− q) · 1

p
=

q + px + p− q

p
=

p(x + 1)

p
= x + 1,

a ich ±rednia geometryczna[(
1 +

p

q
x
)q

1p−q
] 1

p
=
[(

1 +
p

q
x
)q] 1

p
.

Oznacza to, »e nasza nierówno±¢ sprowadza si¦ do nierówno±ci pomi¦dzy ±redni¡
arytmetyczn¡ a geometryczn¡ tych p liczb, co ko«czy dowód. tu

1.5. Wniosek. Niech liczby α < 1 < β b¦d¡ wymierne. Wówczas dla dowolnych
x, y > 0 zachodz¡ nierówno±ci

(1 + x)α < 1 + xα, (1 + y)β > 1 + yβ.

Dowód . Podstawiaj¡c y = xα i β = 1/α, ªatwo si¦ przekonujemy, »e nierówno±ci
te s¡ równowa»ne. Wystarczy zatem dowie±¢ tylko drugiej z nich.
Przyjmijmy najpierw, »e βy ≥ yβ. Wtedy na mocy nierówno±ci Bernoulliego

(1 + y)β > 1 + βy ≥ 1 + yβ,

tak jak chcieli±my.



6 Analiza B

Je±li natomiast βy ≤ yβ, to yβ−1 ≥ β i stosuj¡c ponownie nierówno±¢ Bernoul-
liego widzimy, »e

(1 + y)β = yβ(1 + 1/y)β > yβ(1 + β/y)

= yβ + βyβ−1 ≥ β2 + yβ > 1 + yβ,

wi¦c i w tym wypadku wszystko si¦ zgadza. tu

Dodajmy, »e zaªo»enie o wymierno±ci wykªadnika w nierówno±ci Bernoulliego
jest nieistotne. Przekonamy si¦ o tym w rozdziale 3.
Symbolem Newtona nazywamy wyra»enie(

n

k

)
=

n!

k!(n− k)!
.

1.6. Twierdzenie (wzór dwumienny Newtona). Dla dowolnych liczb a, b ∈ R oraz
dowolnego n ∈ N zachodzi równo±¢

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Dowód . Mo»emy bez straty ogólno±ci zaªo»y¢, »e b 6= 0. Dziel¡c wzór Newtona
obustronnie przez bn i oznaczaj¡c x = a

b
, otrzymujemy

(1 + x)n =
n∑

k=0

(
n

k

)
xk

i tego wzoru b¦dziemy dowodzi¢.
Sprawdzenie warunku pocz¡tkowego dla n = 1 nie nastr¦cza »adnych trudno±ci.

Aby wykona¢ krok indukcyjny, zaªo»my, »e wzór obowi¡zuje dla pewnego n ≥ 1.
Wtedy

(1 + x)n+1 = (1 + x)(1 + x)n = (1 + x)
n∑

k=0

(
n

k

)
xk

=
n∑

k=0

(
n

k

)
xk +

n∑
k=0

(
n

k

)
xk+1

= 1 +
n∑

k=1

((
n

k

)
+

(
n

k − 1

))
xk + xn+1

= 1 +
n∑

k=1

(
n + 1

k

)
xk + xn+1 =

n+1∑
k=0

(
n + 1

k

)
xk,

bo (
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
.

Tym samym zako«czyli±my dowód. tu
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Zauwa»my mimochodem, »e wzór ten pozwala ªatwo uzasadni¢ nierówno±¢ Ber-
noulliego o wykªadniku naturalnym dla liczb nieujemnych, a mianowicie

(1 + x)n =
n∑

k=0

(
n

k

)
xk = 1 + nx +

n∑
k=2

(
n

k

)
xk ≥ 1 + nx,

gdy» dla x ≥ 0 oczywi±cie
n∑

k=2

(
n
k

)
xk ≥ 0.

Dla dowolnej liczby x ∈ R okre±lamy jej moduª (lub warto±¢ bezwzgl¦dn¡)
wzorem

|x| =
{

x dla x ≥ 0;
−x dla x < 0,

lub równowa»nie
|x| = max{x,−x}.

Funkcja warto±ci bezwgl¦dnej speªnia warunek trójk¡ta

|x + y| ≤ |x|+ |y|, x, y ∈ R,

przy czym równo±¢ zachodzi, wtedy i tylko wtedy gdy xy ≥ 0. St¡d natychmiast
wynika nierówno±¢ ∣∣∣|x| − |y|∣∣∣ ≤ |x− y|, x, y ∈ R.

Moduª liczby x mo»na interpretowa¢ jako jej odlegªo±¢ od zera na osi liczbowej,
za± |x − y| jako odlegªo±¢ x od y. Pami¦taj¡c, »e ±rodek odcinka [x, y] to punkt
x+y

2
, mo»emy wyrazi¢ wi¦ksz¡ z liczb x, y wzorem

max{x, y} =
x + y

2
+
|x + y|

2
,

a mniejsz¡

min{x, y} =
x + y

2
− |x + y|

2
.

Cz¦±ci¡ caªkowit¡ liczby rzeczywistej x nazywamy najwi¦ksz¡ liczb¦ caªkowit¡
n tak¡, »e n ≤ x i oznaczamy j¡ przez [x].

De�nicj¦ t¦ mo»na zapisa¢ równie» w taki sposób:

[x] = max{n ∈ Z : n ≤ x}.

Zauwa»my, »e je±li x ∈ [n, n+1) dla pewnego n ∈ Z, to [x] = n; w szczególno±ci,
je±li x ∈ Z, to [x] = x. Zauwa»my równie», »e ka»d¡ liczb¦ rzeczywist¡ x mo»na
jednoznacznie przedstawi¢ w postaci

x = [x] + m(x),

gdzie m(x) ∈ [0, 1).
Niech x ∈ R. Liczb¦ m(x) = x− [x] nazywamy mantys¡ liczby x.
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Aby oswoi¢ Czytelnika z poj¦ciem cz¦±ci caªkowitej liczby, udowodnimy nast¦pu-
j¡c¡ to»samo±¢:

[nx] =
n−1∑
k=0

[
x +

k

n

]
, x ∈ R, n ∈ N.

Zauwa»my najpierw, »e je±li m ∈ Z, to
[n(x + m)] = [nx + nm] = [nx] + nm

oraz
n−1∑
k=0

[
x + m +

k

n

]
=

n−1∑
k=0

([
x +

k

n

]
+ m

)
=

n−1∑
k=0

[
x +

k

n

]
+ nm,

wi¦c po zast¡pieniu x przez x+m to»samo±¢ zostanie zachowana. Wystarczy zatem
udowodni¢ j¡ dla 0 ≤ x < 1.
Niech wi¦c 0 ≤ x < 1 i niech l = [nx]. Wtedy 0 ≤ l ≤ n− 1 i

l

n
≤ x <

l + 1

n
,

a wobec tego [
x +

k

n

]
=

{
0 je»eli 0 ≤ k < n− l;
1 je»eli n− l ≤ k ≤ n.

Zatem
n−1∑
k=0

[
x +

k

n

]
=

n−1∑
k=n−l

[
x +

k

n

]
= l = [nx],

tak jak zapowiedzieli±my.



2. Niesko«czone ci¡gi liczbowe

Ci¡giem liczbowym nazywamy funkcj¦

a : N → R.

Warto±ci tej funkcji oznaczamy przez a(n) = an i nazywamy wyrazami ci¡gu.
Cz¦sto ci¡g oznaczamy przez {an}∞n=1 lub po prostu przez {an}.

Ci¡g {an}∞n=1 nazywamy ograniczonym od góry, je±li

∃M ∈ R ∀n ∈ N an ≤ M,

a ograniczonym od doªu, je±li

∃m ∈ R ∀n ∈ N an ≥ m.

Ci¡g {an}∞n=1 nazywa si¦ ograniczony, je±li jest ograniczony od góry i od doªu,
tzn.

∃K ∈ R ∀n ∈ N |an| ≤ K.

2.1. Przykªad. Poka»emy, »e ci¡g en =
(
1+ 1

n

)n
jest ograniczony od góry. Istotnie,

dla dowolnego n ∈ N mamy

en =
(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)( 1

n

)k

=
n∑

k=0

n · (n− 1) · . . . · (n− k + 1)

k!
· 1

nk

=
n∑

k=0

1

k!
· 1 ·

(n− 1

n

)
·
(n− 2

n

)
· . . . ·

(n− k + 1

n

)
=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .
(
1− k − 1

n

)
<

n∑
k=0

1

k!
< 1 +

n−1∑
k=0

1

2k
= 1 +

1− 1
2

n

1− 1
2

< 1 +
1

1− 1
2

= 3.

(2.2)

Ci¡g {an}∞n=1 nazywa si¦

(i) rosn¡cy, je±li
∀n ∈ N an+1 ≥ an,

(ii) ±ci±le rosn¡cy, je±li

∀n ∈ N an+1 > an,

(iii) malej¡cy, je±li
∀n ∈ N an+1 ≤ an,
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(iv) ±ci±le malej¡cy, je±li

∀n ∈ N an+1 < an.

2.3. Przykªad. Poka»emy, »e ci¡g en = (1 + 1
n
)n jest ±ci±le rosn¡cy, zatem jest

ograniczony równie» od doªu (przez swój pierwszy wyraz). Rzeczywi±cie, na mocy
nierówno±ci Bernoulliego

en+1 =
(
1 +

1

n + 1

)n+1

=
[(

1 +
1

n + 1

)n+1
n
]n

>
[
1 +

n + 1

n
· 1

n + 1

]n
=
(
1 +

1

n

)n

= en.

(2.4)

Mówimy, »e liczba g jest granic¡ ci¡gu liczbowego {an}∞n=1, je±li w ka»dym
przedziale otwartym zawieraj¡cym g znajduj¡ si¦ prawie wszystkie wyrazy ci¡gu
(tzn. wszystkie poza, by¢ mo»e, sko«czon¡ ilo±ci¡).

De�nicj¦ t¦ mo»emy zapisa¢ równie» tak:

g = lim
n→∞

an ⇔ ∀ε > 0 ∃N ∈ N ∀n ≥ N |an − g| < ε.

Uwag a. Je±li w ci¡gu {an} zmienimy, usuniemy lub dodamy sko«czon¡ ilo±¢
wyrazów, to nie b¦dzie to miaªo »adnego wpªywu ani na zbie»no±¢ ci¡gu ani na
warto±¢ granicy.

Uwa g a. Je±li c > 0 jest pewn¡ staª¡, to wyst¦puj¡cy w de�nicji warunek

∀ε > 0 ∃N ∈ N ∀n ≥ N |an − g| < ε

jest równowa»ny nast¦puj¡cemu:

∀ε > 0 ∃N ∈ N ∀n ≥ N |an − g| < c · ε.

Z tego powodu mówi si¦ czasem o ÿelastyczno±ci epsilona".

2.5. Przykªad. Poka»emy, »e

lim
n→∞

1

n
= 0.

Istotnie, dla ustalonego ε > 0 nierówno±¢ | 1
n
− 0| < ε zachodzi dla wszystkich

n > 1
ε
, tzn.

∀ε n >
1

ε
⇒ 1

n
∈ (−ε, ε).

Jako wska¹nik N wyst¦puj¡cy w de�nicji mo»na wi¦c przyj¡¢

N =
[1
ε

]
+ 1.
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2.6. Przykªad. Poka»emy z de�nicji, »e

bn =
3n + 4

15n− 1

n→∞−−−→ 1

5
.

Ustalmy dowolnie liczb¦ ε > 0. Chcemy pokaza¢, »e dla dostatecznie du»ych n
zachodzi nierówno±¢ ∣∣∣bn −

1

5

∣∣∣ < ε.

Poniewa» ∣∣∣ 3n + 4

15n− 1
− 1

5

∣∣∣ =
∣∣∣ 21

5(15n− 1)

∣∣∣ =
21

5(15n− 1)
,

wi¦c ∣∣∣bn −
1

5

∣∣∣ < ε ⇔ 21 < 5(15n− 1)ε ⇔ n >
21 + 5ε

75ε
,

zatem pokazali±my, »e

∀ε > 0 ∃N =
[21 + 5ε

75ε

]
+ 1 ∀n ≥ N

∣∣∣bn −
1

5

∣∣∣ < ε.

2.7. Przykªad. Poka»emy, »e ci¡g staªy o wyrazach an = c ma granic¦ równ¡ c.
Rzeczywi±cie, je±li ustalimy dowolnie ε > 0, to nierówno±¢

|an − c| = |c− c| = 0 < ε

jest speªniona dla ka»dego n ∈ N.

2.8. Przykªad. Zauwa»my, »e

lim
n→∞

an = 0 ⇔ lim
n→∞

|an| = 0,

gdy» |an − 0| =
∣∣|an| − 0

∣∣.
Wprost z de�nicji wynika nast¦puj¡cy wniosek.

2.9. Wniosek. Je»eli an → a i bn → b oraz an ≤ bn dla n ∈ N, to a ≤ b.

Nieco dalej idzie wa»ne twierdzenie o trzech ci¡gach.

2.10. Twierdzenie (o trzech ci¡gach). Je±li ci¡gi {an} i {bn} s¡ zbie»ne do tej
samej granicy g ∈ R, a ci¡g {xn} ma wªasno±¢

∀n ∈ N an ≤ xn ≤ bn,

to {xn} jest równie» zbie»ny do g.

Dowód . Niech ε > 0. Poniewa» lim an = g, wi¦c istnieje N1 ∈ N, takie »e je±li
n ≥ N1, to |an − g| < ε, czyli g − ε < an < g + ε. Podobnie dla ci¡gu {bn}
istnieje N2 ∈ N, takie »e g − ε < bn < g + ε dla n ≥ N2. Wtedy dla ka»dego
n ≥ N3 = max{N1, N2} mamy

g − ε < an ≤ xn ≤ bn < g + ε,
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czyli
|xn − g| < ε,

co oznacza, »e ci¡g {xn} równie» zbiega do g. tu

Uwag a. Oczywi±cie w twierdzeniu tym wystarczy zaªo»y¢, »e nierówno±¢

an ≤ xn ≤ bn

zachodzi dla prawie wszystkich n ∈ N, gdy» (jak zauwa»yli±my wcze±niej) sko«czo-
na ilo±¢ wyrazów ci¡gu nie ma wpªywu na istnienie i warto±¢ jego granicy.

2.11. Wniosek. Je±li an → 0 oraz 0 ≤ bn ≤ an dla n ∈ N, to równie» bn → 0.

2.12. Twierdzenie. Ka»dy ci¡g zbie»ny jest ograniczony.

Dowód . We¹my dowolny ci¡g zbie»ny

an
n→∞−−−→ a ∈ R.

Wtedy istnieje liczba N ∈ N, taka »e je±li n ≥ N , to |an − a| < 1. Poniewa»∣∣|an| − |a|
∣∣ < |an − a|,

wi¦c
∀n ≥ N |an| < |a|+ 1,

zatem
∀n ∈ N |an| < max{|a|+ 1, |a1|, |a2|, |a3|, . . . , |aN−1|},

czyli {an} jest ograniczony. tu

Zauwa»my, »e implikacja w drug¡ stron¦ oczywi±cie nie jest prawdziwa. Jako
przykªad rozwa»my ci¡g o wyrazach an = (−1)n. Jest on ograniczony, bo |an| ≤ 1,
ale nie jest zbie»ny. Przypu±¢my bowiem, »e an → g, gdy n → ∞, dla pewnego
g ∈ R. Wtedy istniaªaby taka liczba N ∈ N, »e |an − g| < 1 dla n ≥ N . Dla takich
n mieliby±my wi¦c

|an+1 − an| = |(−1)n+1 − (−1)n| = 2

i jednocze±nie

|an+1 − an| = |an+1 − g + g − an| ≤ |an+1 − g|+ |g − an| < 2,

co nie jest mo»liwe.

Mówimy, »e ci¡g jest rozbie»ny, je±li nie ma granicy liczbowej. Mówimy, »e ci¡g
{an} jest rozbie»ny do niesko«czono±ci (ma granic¦ niewªa±ciw¡ równ¡∞)
i piszemy lim

n→∞
an = ∞, je±li

∀M > 0 ∃N ∈ N ∀n ≥ N an > M.
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Mówimy, »e {an} jest rozbie»ny do −∞ (ma granic¦ niewªa±ciw¡ równ¡ −∞)
i piszemy lim

n→∞
an = −∞, je±li

∀M > 0 ∃N ∈ N ∀n ≥ N an < −M.

2.13. Przykªad. Ci¡g o wyrazach an = n jest rozbie»ny do∞. Istotnie, dla dowol-
nej liczby M > 0, nierówno±¢ an > M zachodzi dla wszystkich n ≥ [M ] + 1.

2.14. Przykªad. Ustawiaj¡c ÿmetod¡ tablicow¡" wszystkie liczby wymierne w
ci¡g niesko«czony, otrzymamy przykªad ci¡gu, który nie jest ograniczony, zatem
nie jest te» zbie»ny. Ci¡g ten nie ma nawet granicy niewªa±ciwej.

2.15. Fakt. Niech b¦d¡ dane dwa ci¡gi {an} i {bn}. Je±li lim
n→∞

bn = ∞ oraz dla

prawie wszystkich n ∈ N an ≥ bn, to równie» lim
n→∞

an = ∞.

2.16. Przykªad. Poniewa» 2n ≥ n dla wszystkich n ∈ N, wi¦c

lim
n→∞

2n = ∞.

2.17. Fakt. Niech {an} b¦dzie ci¡giem liczbowym. Wtedy

lim
n→∞

an = ∞ ⇔ lim
n→∞

(−an) = −∞.

Przykªadami ci¡gów rozbie»nych do −∞ s¡ wi¦c

{−n}n∈N, {−2n}n∈N, {−n · 2n}n∈N.

2.18. Fakt. Je±li lim
n→∞

xn = x, to lim
n→∞

|xn| = |x|.

Dla dowodu wystarczy zauwa»y¢, »e
∣∣|xn| − |x|

∣∣ ≤ |xn − x|.

2.19. Twierdzenie (arytmetyczne wªasno±ci granic). Niech {an} i {bn} b¦d¡ ci¡-
gami liczbowymi. Niech ponadto α ∈ R. Je±li lim

n→∞
an = a oraz lim

n→∞
bn = b, to

(a) lim
n→∞

(αan) = αa,

(b) lim
n→∞

(an + bn) = a + b,

(c) lim
n→∞

(an · bn) = ab.

Je±li ponadto b 6= 0 i bn 6= 0 dla ka»dego n ∈ N, to

(d) lim
n→∞

an

bn
= a

b
.

Dowód . (a) { (c). Niech ε > 0. Wtedy

lim
n→∞

an = a ⇒ ∃N1 ∈ N ∀n > N1 |an − a| < ε
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oraz
lim

n→∞
bn = b ⇒ ∃N2 ∈ N ∀n > N2 |bn − b| < ε.

Zatem nierówno±¢
|αan − αa| = |α| · |an − a| < |α|ε

jest speªniona dla ka»dego n > N1, co pokazuje wªasno±¢ (a). Natomiast nierówno±¢

|(an + bn)− (a + b)| ≤ |an − a|+ |bn − b| < 2ε

jest speªniona dla ka»dego n > max{N1, N2}, co dowodzi wªasno±ci (b). Poniewa»
ci¡g {an} jako zbie»ny jest ograniczony, wi¦c

∃K > 0 ∀n ∈ N |an| < K

i dla ka»dego n > max{N1, N2} mamy

|anbn − ab| = |anbn − anb + anb− ab|
≤ |an| · |bn − b|+ |an − a| · |b|
< K · ε + |b| · ε = (K + |b|) · ε,

co potwierdza wªasno±¢ (c).
(d). Wobec wªasno±ci (c) wystarczy pokaza¢, »e

lim
n→∞

1

bn

=
1

b
.

Na mocy Faktu 2.18 mamy
lim

n→∞
|bn| = |b|,

a st¡d

∃N1 ∈ N ∀n > N1 |bn| >
|b|
2

.

Niech ε > 0. Wobec zbie»no±ci ci¡gu {bn}
∃N2 ∈ N ∀n > N2 |bn − b| < ε.

St¡d dla ka»dego n > max{N1, N2} mamy∣∣∣ 1

bn

− 1

b

∣∣∣ =
|b− bn|
|bn| · |b|

<
ε

|b|
2
· |b|

=
2

|b|2
· ε.

Tym samym dowód zostaª zako«czony. tu

Przez indukcj¦ ªatwo wyprowadzamy nast¦puj¡cy wniosek.

2.20. Wniosek. Niech b¦d¡ dane zbie»ne ci¡gi {a(k)
n }∞n=1, gdzie 1 ≤ k ≤ N . Wtedy

lim
n→∞

N∑
k=1

a(k)
n =

N∑
k=1

lim
n→∞

a(k)
n

oraz

lim
n→∞

N∏
k=1

a(k)
n =

N∏
k=1

lim
n→∞

a(k)
n .
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2.21. Przykªad. Rozwa»my ci¡g geometryczny {qn}, gdzie q > 0. Z nierówno±ci
Bernoulliego dla ka»dego n ∈ N mamy

qn =
(
1 + (q − 1)

)n ≥ 1 + n(q − 1) > (q − 1) · n.

(1) Zaªó»my, »e q > 1. Wtedy qn > cq · n, gdzie cq = q − 1 > 0 i wobec tego

q > 1 ⇒ lim
n→∞

qn = ∞,

bo lim
n→∞

c · n = ∞ dla c > 0.

(2) Zaªó»my, »e q ∈ (0, 1). Wtedy

1

q
> 1 ⇒

(1

q

)n

>
(1

q
− 1
)
n ⇒ qn < dq ·

1

n
,

gdzie dq = q
1−q

, i wobec tego

q ∈ (0, 1) ⇒ lim
n→∞

qn = 0,

bo lim
n→∞

d · 1
n

= d lim
n→∞

1
n

= 0 dla dowolnego d ∈ R.

Niech b¦d¡ dane dwa ci¡gi rozbie»ne do niesko«czono±ci. Mówimy, »e ci¡g {an}
jest szybciej rozbie»ny ni» ci¡g {bn} i piszemy an � bn, je±li

lim
n→∞

an

bn

= ∞.

2.22. Przykªad. Rozwa»my ci¡g geometryczny {qn}∞n=1, gdzie q > 1, oraz ci¡g
pot¦gowy {nα}∞n=1, gdzie i α > 0. Wiemy ju», »e obydwa ci¡gi s¡ rozbie»ne do ∞
oraz »e zachodzi nierówno±¢ qn ≥ c · n dla pewnej dodatniej staªej c. Co wi¦cej,

qn =
[(

1 + (q − 1)
)n

β

]β
≥
[
1 +

n

β
(q − 1)

]β
>
(q − 1

β

)β

· nβ = cq,β · nβ

dla wymiernych 0 < β ≤ n. Zatem dla n ≥ β ≥ α + 1 otrzymujemy

qn

nα
>

cq,β · nβ

nα
≥ cq,β · n,

a st¡d

lim
n→∞

qn

nα
= ∞,

czyli

qn � nα.
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2.23. Przykªad. Porównajmy teraz ci¡g geometryczny {qn}∞n=1, gdzie q > 1,
z równie» rozbie»nym do∞ ci¡giem {n!}∞n=1. Zobaczymy niedªugo, »e (patrz Przy-
kªad 2.32)

(2.24) n! >
(n

3

)n

.

Poniewa» dla dostatecznie du»ych n mamy n
3

> q2, wi¦c dla takich n otrzymujemy

n! > (q2)n = q2n = qn · qn,

a st¡d
n!

qn
> qn n→∞−−−→∞.

Zatem

lim
n→∞

n!

qn
= ∞,

czyli
n! � qn.

Pami¦taj¡c, »e n! � qn � nα (gdzie q > 1 i α > 0) mo»emy ªatwo znale¹¢
warto±ci granic niektórych ci¡gów, np.

lim
n→∞

(101
100

)n

n106 = lim
n→∞

2n

n2
= ∞,

lim
n→∞

(1010)n

n!
= lim

n→∞

2n

n!
= 0.

Policzmy teraz kilka wa»nych granic.

2.25. Fakt. Je±li a > 0, to
lim

n→∞
n
√

a = 1.

Dowód . Rozpatrzmy najpierw przypadek, gdy a ≥ 1. Niech ε > 0. Wtedy ci¡g
{(1 + ε)n}∞n=1 jest rozbie»nym do ∞ ci¡giem geometrycznym, wi¦c

∃N ∈ N ∀n > N (1 + ε)n > a.

St¡d dla ka»dego n > N mamy
n
√

a− 1 < ε.

Poniewa» dla a ≥ 1 równie» n
√

a ≥ 1, wi¦c dla n > N

| n
√

a− 1| = n
√

a− 1 < ε.

Je±li natomiast 0 < a < 1, to 1
a

> 1, zatem z powy»szego

1 = lim
n→∞

n

√
1

a
= lim

n→∞

1
n
√

a
,

wi¦c na mocy wªasno±ci (d) Twierdzenia 2.19 otrzymujemy lim
n→∞

n
√

a = 1. tu



2. Niesko«czone ci¡gi liczbowe 17

2.26. Fakt. Zachodzi nast¦puj¡ca równo±¢:

lim
n→∞

n
√

n = 1.

Dowód . Niech ε > 0. Wtedy 1 + ε > 1, zatem (1 + ε)n � n, tzn.

lim
n→∞

n

(1 + ε)n
= 0,

a st¡d

∃N ∈ N ∀n > N
n

(1 + ε)n
< 1.

Wtedy dla ka»dego n > N mamy
n
√

n < 1 + ε,

czyli
| n
√

n− 1| = n
√

n− 1 < ε,

co, wobec dowolno±ci wyboru ε, dowodzi tezy. tu

2.27. Fakt. Zachodzi nast¦puj¡ca równo±¢:

lim
n→∞

n
√

n! = ∞.

Dowód . Na mocy nierówno±ci (2.24)
n
√

n! >
n

3
,

co wobec rozbie»no±ci do ∞ ci¡gu {n
3
} poci¡ga tez¦. tu

Wspomnian¡ na wst¦pie wªasno±¢ ci¡gªo±ci zbioru liczb rzeczywistych wygodnie
b¦dzie sformuªowa¢ w jezyku teorii zbie»no±ci ci¡gów.

Aksjomat ci¡gªo±ci. Ka»dy rosn¡cy i ograniczony z góry ci¡g liczb rzeczywistych
jest zbie»ny.

Wystarczy zastosowa¢ aksjomat ci¡gªo±ci do ci¡gu o wyrazach przeciwnych, by
otrzyma¢

Wniosek. Ka»dy malej¡cy i ograniczony z doªu ci¡g liczb rzeczywistych jest zbie-
»ny.

Jak pokazali±my wcze±niej (patrz nierówno±ci (2.2) i (2.4)) ci¡g o wyrazach

en =
(
1 +

1

n

)n

jest ±ci±le rosn¡cy i ograniczony, wi¦c, na mocy aksjomatu ci¡gªo±ci, zbie»ny. War-
to±¢ jego granicy nazywamy liczb¡ e.
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2.28. Twierdzenie. Zachodzi nast¦puj¡ca równo±¢:

e = lim
n→∞

n∑
k=0

1

k!
.

Dowód . Oczywi±cie ci¡g

an =
n∑

k=0

1

k!

jest ±ci±le rosn¡cy i, jak wynika z nierówno±ci (2.2), ograniczony, a wi¦c zbie»ny.
Oznaczmy jego granic¦ przez a ∈ R. Wiemy ju» tak»e, »e

∀n ∈ N en =
(
1 +

1

n

)n

≤
n∑

k=0

1

k!
= an,

wi¦c na mocy Wniosku 2.9 jest e ≤ a. Pozostaje dowie±¢ nierówno±ci przeciwnej.
W tym celu ustalmy liczb¦ m ∈ N. Wtedy dla dowolnego n > m

e ≥ en =
(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

=
n∑

k=0

1

k!
· n(n− 1) . . . (n− k + 1)

nk

= 1 +
n∑

k=1

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .
(
1− k − 1

n

)
> 1 +

m∑
k=1

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .
(
1− k − 1

n

)
= 1 + xn.

(2.29)

Zauwa»my, »e

∀j ∈ N lim
n→∞

(
1− j

n

)
= 1,

a st¡d na mocy Wniosku 2.20

lim
n→∞

xn = lim
n→∞

m∑
k=1

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .
(
1− k − 1

n

)
=

m∑
k=1

1

k!
.

Przechodz¡c wi¦c w nierówno±ci (2.29) do granicy, gdy n →∞, otrzymujemy

e ≥ 1 +
m∑

k=1

1

k!
=

m∑
k=0

1

k!
= am,

a st¡d, jeszcze raz korzystaj¡c z Wniosku 2.9, dostajemy e ≥ a. tu
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2.30. Przykªad. Nast¦puj¡ca nierówno±¢ okre±la, jak dokªadnie kolejne sumy cz¦±-
ciowe an przybli»aj¡ liczb¦ e:

(2.31) ∀n ∈ N 0 < e−
n∑

k=0

1

k!
<

1

n · n!
.

Aby j¡ uzasadni¢, zauwa»my, »e dla dowolnego n ∈ N

e−
n∑

k=0

1

k!
= lim

m→∞

m∑
k=0

1

k!
−

n∑
k=0

1

k!

= lim
m→∞

( m∑
k=0

1

k!
−

n∑
k=0

1

k!

)

= lim
m→∞

m∑
k=n+1

1

k!
,

o ile m > n. Oszacujmy wyrazy tego ci¡gu. Mamy

m∑
k=n+1

1

k!
=

1

(n + 1)!
+

1

(n + 2)!
+ . . . +

1

m!

=
1

(n + 1)!
·
(

1 +
1

n + 2
+

1

(n + 2)(n + 3)
+ . . . +

1

(n + 2)(n + 3) . . . m

)
≤ 1

(n + 1)!
·
(

1 +
1

n + 2
+

1

(n + 2)2
+ . . . +

1

(n + 2)m−n−1

)
=

1

(n + 1)!
·
1− 1

(n+2)m−n

1− 1
n+2

≤ 1

(n + 1)!
· n + 2

n + 1

=
1

n · n!
· (n + 2)n

(n + 1)2
=

1

n · n!
· n2 + 2n

n2 + 2n + 1
<

1

n · n!
.

Poniewa» prawa strona ostatniej sªabej nierówno±ci nie zale»y od m, wi¦c równie»

lim
m→∞

m∑
k=n+1

1

k!
<

1

n · n!
.

2.32. Przykªad. Dla ka»dej liczby naturalnej n zachodzi nast¦puj¡ca nierówno±¢:

n
√

n! >
n

e
.
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Dla dowodu zauwa»my, »e dla dowolnych liczb naturalnych m, n mamy[(
1 +

1

n

)n+1
]m

=

(
1 +

1

n

)m(n+1)

=

m(n+1)∑
k=0

(
m(n + 1)

k

)
1

nk

≥ 1 +

(
m(n + 1)

m

)
1

nm

= 1 +
1

m!
·

m−1∏
j=0

m(n + 1)− j

n

= 1 +
1

m!
·

m−1∏
j=0

(
m +

m− j

n

)
≥ 1 +

1

m!

m−1∏
j=0

m = 1 +
1

m!
·mm,

a poniewa» prawa strona nie zale»y od n, wi¦c mo»emy przej±¢ do granicy, gdy
n →∞, otrzymuj¡c

em ≥ mm

m!
+ 1 >

mm

m!
,

sk¡d

m! >

(
m

e

)m

.

2.33. Przykªad. Pierwiastek z dowolnej liczby naturalnej jest albo liczb¡ natu-
raln¡ albo niewymiern¡. Zaªó»my bowiem, »e dla dowolnej liczby naturalnej n

√
n =

p

q
,

gdzie p ∈ N, q ∈ Z \ {0} oraz p i q s¡ wzgl¦dnie pierwsze. Podnosz¡c obie strony
do kwadratu, otrzymujemy równo±¢ równowa»n¡

n =

(
p

q

)2

,

a st¡d

nq2 = p2.

Gdyby liczba q miaªa jaki± dzielnik pierwszy, to musiaªby on dzieli¢ równie» praw¡
stron¦, czyli liczb¦ p, a tak by¢ nie mo»e (bo p i q s¡ wzgl¦dnie pierwsze), zatem q
nie ma dzielników pierwszych, czyli q = 1, co oznacza, »e

√
n = p ∈ N.

2.34. Fakt. Liczba e jest niewymierna.
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Dowód . Zaªó»my nie wprost, »e e = p
q
, gdzie p, q ∈ N s¡ wzgl¦dnie pierwsze. Dla

n = q nierówno±¢ (2.31) przyjmuje wtedy posta¢

0 <
p

q
−

q∑
k=0

1

k!
<

1

q · q!
.

Mno»¡c obie strony przez q!, otrzymujemy

0 < p (q − 1)!− q! ·
q∑

k=0

1

k!
<

1

q
≤ 1.

Aby uzyska¢ sprzeczno±¢, wystarczy zauwa»y¢, »e liczba

α = p (q − 1)!−
q∑

k=0

q!

k!
∈ (0, 1)

jest naturalna. tu

2.35. Przykªad. Niech b¦dzie dana liczba c > 0. Zde�niujmy rekurencyjnie ci¡g
przybli»e« {xn} kwadratowego pierwiastka z c. Niech mianowicie x0 ≥

√
c b¦dzie

dowolne i niech

xn+1 =
1

2

(
xn +

c

xn

)
, dla n = 0, 1, 2, 3, . . .

Zauwa»my, »e x0 ≥
√

c oraz

xn+1 =
1

2

(
xn +

c

xn

)
≥
√

xn ·
c

xn

=
√

c,

wi¦c {xn}n∈N jest ograniczony z doªu przez
√

c. Ponadto

xn+1 =
1

2

(
xn +

c

xn

)
≤ max

{
xn,

c

xn

}
= xn,

bo xn ≥
√

c ≥ c/xn. St¡d
xn+1

xn

≤ 1,

czyli {xn}n∈N jest malej¡cy, zatem zbie»ny do pewnej granicy x ≥
√

c.
Aby obliczy¢ x, przejd¹my do granicy z n → ∞ we wzorze de�niuj¡cym ci¡g,

otrzymuj¡c

x =
1

2

(
x +

c

x

)
,

sk¡d

x =
c

x
,

a poniewa» x > 0, wi¦c
x =

√
c.
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Obliczmy dla ilustracji przybli»enia
√

2, jakie mo»na otrzyma¢ tym sposobem.
Przyjmuj¡c x0 = 2, widzimy, »e

x1 =
3

2
= 1.5, x2 =

17

12
≈ 1.4167, x3 =

577

408
≈ 1.4142.

Ostatnie przybli»enie jest bardzo dobre, ale i poprzednie jest ju» niezªe.

2.36. Przykªad. Rozwa»my ci¡g o wyrazach

an =
n∑

k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ . . . + (−1)n+1 1

n
.

Ci¡g ten oczywi±cie nie jest monotoniczny. Mimo to wywnioskujemy jego zbie»no±¢
z aksjomatu ci¡gªo±ci. W tym celu przyjrzyjmy si¦ ci¡gom

bn = a2n−1

oraz
cn = a2n.

Zauwa»my, »e

bn+1 − bn = a2n+1 − a2n−1 =
1

2n + 1
− 1

2n
< 0

oraz

bn =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ . . .

+

(
1

2n− 3
− 1

2n− 2

)
+

(
1

2n− 1

)
> 0,

gdy» ka»dy uj¦ty w nawias skªadnik sumy jest dodatni. Zatem ci¡g {bn}, jako male-
j¡cy i ograniczony od doªu, jest zbie»ny (na mocy akjomatu ci¡gªo±ci). Oznaczmy
jego granic¦ przez b ∈ R. Podobnie dla ciagu wyrazów parzystych ci¡gu {an} mamy

cn+1 − cn = a2n+2 − a2n = − 1

2n + 2
+

1

2n + 1
> 0

oraz

cn = 1 +

(
− 1

2
+

1

3

)
+

(
− 1

4
+

1

5

)
+ . . .

+

(
− 1

2n− 2
+

1

2n− 1

)
+

(
− 1

2n

)
< 1

(gdy» ka»dy uj¦ty w nawias skªadnik sumy jest ujemny), wi¦c ci¡g {cn} jest zbie»ny,
jako rosn¡cy i ograniczony z góry. Oznaczmy jego granic¦ przez c ∈ R. Zauwa»my
ponadto, »e

cn − bn = − 1

2n
wi¦c przechodz¡c do granicy z n →∞, dostajemy

b = c.
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Pokazali±my w ten sposób, »e ci¡gi {an} i {bn} s¡ zbie»ne do tej samej granicy,
zatem w ka»dym przedziale otwartym zawieraj¡cym b = c znajduj¡ si¦ prawie
wszystkie wyrazy ci¡gu {an} o numerach parzystych i prawie wszystkie o numerach
nieparzystych, czyli tak naprawd¦ prawie wszystkie wyrazy tego ci¡gu, co oznacza,
»e ci¡g {an}n∈N jest zbie»ny. Troch¦ pó¹niej zobaczymy, »e jego granica jest równa
log 2.

2.37. Przykªad. Rozwa»my ci¡g zde�niowany rekurencyjnie w nast¦puj¡cy spo-
sób:

p1 = a ∈ (0, 1),

pn+1 = pn α + (1− pn)β, n = 1, 2, 3, . . . ,

gdzie 0 < α < β < 1. Gdyby ci¡g {pn} byª zbie»ny do pewnej granicy p , to
przechodz¡c w ostatniej równo±ci do granicy z n →∞, otrzymaliby±my

p = p α + (1− p)β,

a st¡d

p =
β

1 + β − α
.

Poka»emy, »e ci¡g {pn} rzeczywi±cie jest zbie»ny do granicy p (jej warto±¢ nie zale»y
od wyboru p1 = a). W tym celu zauwa»my najpierw, »e ci¡g {pn} jest ograniczony,
gdy»

p1 = a ∈ (0, 1)

oraz

pn ∈ (0, 1) ⇒
{

pn+1 = pn α + (1− pn)β > 0
pn+1 = α + (1− pn)(β − α) < α + (β − α) = β < 1.

Przypu±¢my teraz, »e
pn+1 ≥ pn−1.

Wtedy

pn+2 = pn+1 α + (1− pn+1)β = (α− β) pn+1 + β

≤ (α− β) pn−1 + β = pn

Dla ustalenia uwagi zaªó»my, »e p3 ≥ p1. Wtedy z powy»szego wynika, »e {p2k−1}∞k=1

jest rosn¡cy oraz {p2k}∞k=1 jest malej¡cy. Analogicznie, je±li p3 ≤ p1, to pod-
ci¡g wyrazów nieparzystych jest malej¡cy, a podci¡g wyrazów parzystych jest ros-
n¡cy. Zatem obydwa podci¡gi, jako ograniczone i monotoniczne, s¡ zawsze zbie»ne.
Ka»dy z nich speªnia ponadto t¦ sam¡ rekurencj¦:

pn+1 = pn α + (1− pn)β

= β + pn (α− β)

= β +
(
pn−1 α + (1− pn−1)β

)
= β

(
1 + (α− β)

)
+ pn−1(α− β)2,
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wi¦c przechodz¡c z n →∞, otrzymujemy, »e granice obu tych podci¡gów s¡ równe
p, takiemu »e

p = β
(
1 + (α− β)

)
+ p (α− β)2,

a st¡d

p =
β
(
1 + (α− β)

)
1− (α− β)2

=
β

1− α + β
,

co mieli±my pokaza¢.

Dla dowolnego ci¡gu {xn}n∈N przyjmijmy nast¦puj¡ce oznaczenie:

x′n = xn+1 − xn.

2.38. Twierdzenie (Stoltz). Niech b¦d¡ dane dwa ci¡gi {an} i {bn}, przy czym
ci¡g {bn} jest ±ci±le rosn¡cy i rozbie»ny do ∞. Wtedy zachodzi nast¦puj¡ca imp-
likacja:

lim
n→∞

a′n
b′n

= g ∈ R ⇒ lim
n→∞

an

bn

= g.

Dowód . Bez straty ogólno±ci mo»emy przyj¡¢, »e a1 = b1 = 0 oraz bn > 0 dla
n ≥ 2. Zaªo»my te» na razie, »e g = 0. Niech ε > 0. Z zaªo»enia istnieje takie
N1 ∈ N, »e

(2.39) ∀n ≥ N1 |a′n| ≤ b′nε.

Zauwa»my bowiem, »e skoro ci¡g {bn} jest ±ci±le rosn¡cy, to ci¡g {b′n} ma wszystkie
wyrazy dodatnie. Wtedy∣∣∣∣an+1

bn+1

∣∣∣∣ =

∣∣∣∣∣ 1

bn+1

( n∑
k=1

(ak+1 − ak)

)∣∣∣∣∣
≤ 1

bn+1

n∑
k=1

|a′k| =
1

bn+1

n∑
k=N1+1

|a′k|+
1

bn+1

N1∑
k=1

|a′k|

≤ ε

bn+1

n∑
k=N1+1

b′k +
CN1

bn+1

≤ 2ε

dla wszystkich n ≥ N2, gdzie N 3 N2 > N1 jest dobrane tak, aby

∀n > N2 bn ≥
CN1

ε
,

a

CN1 =

N1∑
k=1

|a′k|

jest staª¡. Istnienie takiego N2 wynika oczywi±cie z rozbie»no±ci do ∞ ci¡gu {bn}.
Tym samym dowiedli±my twierdzenia w przypadku, gdy g = 0.
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Dla dowolnego g ∈ R niech

αn = an − bng.

Wtedy, jak ªatwo zauwa»y¢ α′n = a′n−gb′n, wi¦c ci¡gi {αn} i {bn} speªniaj¡ zaªo»enia
twierdzenia z g = 0 i na mocy pierwszej cz¦sci dowodu αn

bn
→ 0, sk¡d natychmiast

an

bn

=
αn + gbn

bn

n→∞−−−→ g.

I tak dowód zostaª zako«czony. tu

2.40. Przykªad. Dla ci¡gu zbie»nego ci¡g kolejnych ±rednich arytmetycznych jego
pocz¡tkowych wyrazów jest zbie»ny do tej samej granicy, tzn.

an
n→∞−−−→ a ⇒ a1 + a2 + . . . + an

n

n→∞−−−→ a.

Jest to bezpo±redni wniosek z twierdzenia Stoltza, gdy» dla dowolnego ci¡gu {an}
zbie»nego do a ∈ R mamy

(a1 + a2 + . . . + an+1)− (a1 + a2 + . . . + an)

(n + 1)− n
= an+1

n→∞−−−→ a,

wi¦c równie»
a1 + a2 + . . . + an

n

n→∞−−−→ a.

2.41. Przykªad. Policzmy granic¦ ci¡gu o wyrazach

x(k)
n =

1 + 2k + 3k + . . . + nk

nk+1
,

gdzie k jest dowoln¡ acz ustalon¡ liczb¡ naturaln¡. Zauwa»my, »e dla k = 1 mamy

x1
n =

1 + 2 + 3 + . . . + n

n2
=

1

2
· n(n + 1)

n2
=

1

2
· n + 1

n

n→∞−−−→ 1

2
.

Stosuj¡c twierdzenie Stoltza, poka»emy »e

∀k ∈ N x(k)
n

n→∞−−−→ 1

k + 1
.

W tym celu ustalmy dowolnie liczb¦ k ∈ N oraz przyjmijmy oznaczenia:

an = 1k + 2k + 3k + . . . + nk

oraz
bn = nk+1.

Ci¡g {bn} jest oczywi±cie ±ci±le rosn¡cy i rozbie»ny do ∞. Zauwa»my, »e

a′n
b′n

=
(n + 1)k

(n + 1)k+1 − nk+1
=

1

n
·

(1 + 1
n
)k

(n+1
n

)k+1 − 1
,

gdzie (
1 +

1

n

)k
n→∞−−−→ 1,
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oraz

n ·
[(n + 1

n

)k+1

− 1

]
= n ·

[(
1 +

1

n

)k+1

− 1

]
= n ·

[ k+1∑
j=0

(
k + 1

j

)
1

nj
− 1

]

= (k + 1) +
k+1∑
j=2

(
k + 1

j

)
1

nj−1

n→∞−−−→ (k + 1),

wi¦c
a′n
b′n

n→∞−−−→ 1

k + 1
,

a st¡d, na mocy twierdzenia Stoltza, równie»

x(k)
n

n→∞−−−→ 1

k + 1
.

2.42. Przykªad. Rozwa»my ci¡g o wyrazach

xn =

(
1 +

1

2
+

1

3
+ . . . +

1

n

)
1

nα
,

gdzie Q 3 α ≥ 1. Poka»emy, »e

lim
n→∞

xn = 0.

Istotnie, je±li przyjmiemy oznaczenia

an = 1 +
1

2
+

1

3
+ . . . +

1

n
,

oraz
bn = nα,

to oczywi±cie ci¡g {bn} jest ±ci±le rosn¡cy i rozbie»ny do ∞ oraz

0 <
a′n
b′n

=
1

n+1

(n + 1)α − nα

=
1

n + 1
· 1

nα · (1 + 1
n
)α − nα

≤ 1

n + 1
· 1

nα · (1 + α
n
)− nα

<
1

n
· 1

nα−1 · α
≤ 1

αnα

n→∞−−−→ 0,

wi¦c na mocy twierdzenia Stoltza

xn
n→∞−−−→ 0.

Szacuj¡c skorzystali±my z nierówno±ci Bernoulliego:(
1 +

1

n

)α

≥ 1 +
α

n
.
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Kresem górnym niepustego zbioru E ⊂ R ograniczonego z góry nazywamy
najmniejsze spo±ród jego górnych ogranicze«.

Aby wykaza¢ poprawno±¢ tej de�nicji, poka»emy, »e je±li

E+ = {y ∈ R : ∀x ∈ E x ≤ y} 6= ∅,
to w E+ istnieje element najmniejszy. W tym celu dla dowolnego n ∈ N przyjmijmy
oznaczenie

kn = min
{

k ∈ Z :
k

2n
∈ E+

}
.

Zauwa»my, »e wtedy

∀n ∈ N kn+1 = 2kn lub kn+1 = 2kn − 1 .

Zde�niujmy teraz ci¡g o wyrazach

yn =
kn

2n
∈ E+ .

Mamy

yn+1 =
2kn

2n+1
=

kn

2n
= yn lub yn+1 =

2kn − 1

2n+1
= yn −

1

2n+1
≤ yn,

co oznacza, »e ci¡g {yn} jest malej¡cy. Poniewa» jest on równie» ograniczony z doªu
przez elementy zbioru E (E 6= ∅ z zaªo»enia), wi¦c na mocy aksjomatu ci¡gªo±ci
jest zbie»ny. Oznaczmy jego granic¦ przez y ∈ R. Zauwa»my ponadto, »e

yn −
1

2n
=

kn − 1

2n
/∈ E+,

wi¦c

∃xn ∈ E yn −
1

2n
< xn ≤ yn,

a zatem z twierdzenia o trzech ci¡gach równie»

xn
n→∞−−−→ y.

Poniewa» dowolny element zbioru E jest ograniczony przez wszystkie wyrazy ci¡gu
{yn}, wi¦c jest równie» ograniczony przez granic¦ tego ci¡gu, co oznacza, »e równie»
y ∈ E+. Poka»emy teraz, »e jest to element najmniejszy w tym zbiorze. Przypu±¢my
bowiem, »e tak nie jest, czyli »e istnieje pewien y′ ∈ E+, taki »e y′ < y. Skoro

E 3 xn
n→∞−−−→ y

wi¦c w przedziale (y′, y + 1) s¡ prawie wszystkie wyrazy ci¡gu {xn}, co przeczy
temu, »e y′ ∈ E+. Pokazali±my wi¦c, »e y jest najmniejszym elementem zbioru E+.

Podsumujmy:

2.43. Twierdzenie. Ka»dy niepusty i ograniczony z góry zbiór E ⊂ R ma kres
górny i zawiera rosn¡cy ci¡g elementów zbie»ny do tego kresu.

Analogicznie de�niujemy kres dolny zbioru ograniczonego z doªu. Czytelnik ze-
chce sam napisa¢ t¦ de�nicj¦ i udowodni¢ nast¦puj¡cy
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2.44. Wniosek. Ka»dy niepusty i ograniczony z doªu zbiór E ⊂ R ma kres dolny
i zawiera malej¡cy ci¡g elementów zbie»ny do tego kresu.

Kolejnym wa»nym poj¦ciem niniejszego wykªadu jest poj¦cie punktu skupienia
ci¡gu i ±ci±le zwi¡zane z nim poj¦cie podci¡gu.

Niech b¦dzie dany ci¡g {an}n∈N. Niech ci¡g {nk}k∈N o wyrazach naturalnych b¦dzie
±ci±le rosn¡cy. Wtedy ci¡g o wyrazach

bk = ank

nazywamy podci¡giem ci¡gu {an}.

2.45. Twierdzenie. Ka»dy podci¡g ci¡gu zbie»nego jest zbie»ny do tej samej gra-
nicy.

Udowodnienie tego faktu pozostawiamy Czytelnikowi.

2.46. Twierdzenie (Bolzano-Weierstrass). Ka»dy ograniczony ci¡g liczb rzeczy-
wistych ma podci¡g zbie»ny.

Dowód . Niech {xn}∞n=1 ⊆ [a, b ]. Podzielmy przedziaª [a, b ] na póª i wybierzmy
t¦ poªow¦, gdzie jest niesko«czenie wiele wyrazów ci¡gu {xn}. Oznaczmy ten prze-
dziaª przez [a1, b1]. Niech [a2, b2] b¦dzie t¡ poªow¡ przedziaªu [a1, b1], która zawie-
ra niesko«czenie wiele wyrazów {xn}. Analogicznie konstruujemy zst¦puj¡cy ci¡g
przedzialów, takich »e

|an − bn| = 2−n|a− b|,
z których ka»dy zawiera niesko«czenie wiele wyrazów ci¡gu {xn}. Zauwa»my, »e
wówczas ci¡g {an} jest rosn¡cy i ograniczony z góry przez b, wi¦c zbie»ny do
pewnego α ∈ R, a ci¡g {bn}, jako malej¡cy i ograniczony z doªu przez a, jest
zbie»ny do pewnego β ∈ R. Ponadto

bn − an =
b− a

2n

n→∞−−−→ 0,

wi¦c

(2.47) α = β.

Wybierzmy teraz podci¡g {xnk
}∞k=1 ci¡gu {xn} w nast¦puj¡cy sposób: Niech

xn1 ∈ [a1, b1]. Przypu±¢my, »e wybrali±my ju»

xn1 ∈ [a1, b1] , xn2 ∈ [a2, b2] , . . . , xnk
∈ [ak, bk]

tak, »e
n1 < n2 < . . . < nk.

Jako xnk+1
wybieramy taki wyraz z przedziaªu [ak+1, bk+1], aby nk+1 > nk. Mo»na

to zrobi¢, bo w przedziale znajduje si¦ niesko«czenie wiele wyrazów ci¡gu {xn}.
Skoro

∀k ∈ N ak ≤ xnk
≤ bk,
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wi¦c na mocy (2.47) i twierdzenia o trzech ci¡gach równie»

xnk

n→∞−−−→ α = β,

co ko«czy dowód. tu

Mówimy, »e liczba ξ jest punktem skupienia ci¡gu {xn}, gdy ci¡g {xn} ma
podci¡g zbie»ny do ξ.

2.48. Przykªad. Je±li przez A oznaczymy zbiór punktów skupienia ci¡gu, to
(a) ∀n ∈ N xn = c ⇒ A = {c};
(b) ∀n ∈ N xn = (−1)n ⇒ A = {−1, 1};
(c) xn

n→∞−−−→ a ∈ R ⇒ A = {a}.

2.49. Przykªad. Niech {xn} b¦dzie ci¡giem wszystkich liczb wymiernych odcinka
[0, 1], a ξ dowoln¡ liczb¡ z tego odcinka. Wybierzmy teraz podci¡g {xnk

}k∈N ci¡gu
{xn} tak, aby

∀k ∈ N xnk
∈
(

ξ − 1

k
, ξ +

1

k

)
.

Mo»emy oczywi±cie wybra¢ taki podci¡g, gdy» mi¦dzy dwiema ró»nymi liczbami
rzeczywistymi znajduje si¦ niesko«czenie wiele liczb wymiernych. Tak wybrany
podci¡g jest zbie»ny do ξ, co oznacza, »e zbiorem punktów skupienia ci¡gu {xn}
jest caªy odcinek [0, 1].

2.50. Twierdzenie. Je»eli wszystkie podci¡gi zbie»ne ci¡gu ograniczonego s¡ zbie-
»ne do tej samej granicy, to sam ci¡g jest równie» zbie»ny do tej granicy. Rów-
nowa»nie, je»eli ci¡g ograniczony jest rozbie»ny, to ma przynajmniej dwa podci¡gi
zbie»ne do ró»nych granic.

Dowód . Niech {xn} ⊆ [a, b] b¦dzie ci¡giem rozbie»nym. Z twierdzenia Bolzano-
Weierstrassa istnieje podci¡g

xnk

k→∞−−−→ α.

Z rozbie»no±ci ci¡gu {xn} istnieje ε > 0 taki, »e poza przedziaªem ( α− ε , α + ε )
znajduje si¦ niesko«czenie wiele wyrazów {xn}, które oczywi±cie nadal nale»¡ do
przedziaªu [a, b], wi¦c spo±ród nich równie» mo»emy wybra¢ podci¡g zbie»ny, tzn.

xmk

k→∞−−−→ β,

gdzie
∀k ∈ N |xmk

− α| ≥ ε,

a st¡d |β − α| ≥ ε, wi¦c α 6= β. tu

Kolejne twierdzenie wynika wprost z powy»szego.

2.51. Twierdzenie. Ci¡g ograniczony jest zbie»ny wtedy i tylko wtedy, gdy zbiór
jego punktów skupienia jest jednoelementowy.
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Okazuje si¦, »e mo»na mówi¢ o zbie»no±ci w oderwaniu od poj¦cia granicy.
Sªu»y temu poj¦cie ci¡gu Cauchy'ego, które jak zobaczymy za chwil¦, jest w is-
tocie równowa»ne poj¦ciu ci¡gu zbie»nego.

Mówimy, »e ci¡g liczbowy {an}n∈N jest ci¡giem Cauchy'ego (lub ci¡giem fun-
damentalnym), je±li

∀ε > 0 ∃N ∈ N ∀n, m ≥ N |an − am| < ε.

2.52. Twierdzenie. Ci¡g liczb rzeczywistych jest zbie»ny, wtedy i tylko wtedy gdy
jest ci¡giem Cauchy'ego.

Dowód . (⇒) We¹my ci¡g zbie»ny {an}. Niech ε > 0. Ze zbie»no±ci ci¡gu wynika,
»e istnieje takie N ∈ N, »e dla dowolnych n, m ≥ N

|an − a| < ε oraz |am − a| < ε,

wi¦c
|an − am| < 2ε.

(⇐) We¹my ci¡g Cauchy'ego {an}. Wtedy istnieje takie N ∈ N, »e dla ka»dego
n ≥ N

|an − aN | < 1 ,

czyli
aN − 1 < an < aN + 1.

Poniewa» poza tym przedziaªem jest tylko sko«czona liczba wyrazów, wi¦c caªy
ci¡g {an} jest ograniczony. Zgodnie z twierdzeniem Bolzano-Weierstrassa istnieje
podci¡g {ank

}k∈N ci¡gu {an} zbie»ny do pewnego α ∈ R. Poka»emy, »e caªy ci¡g
{an} jest zbie»ny do α. W tym celu ustalmy dowolnie liczb¡ ε > 0. Poniewa» {an}
jest fundamentalny, wi¦c

∃N ∈ N ∀m,n ≥ N |an − am| < ε.

Natomiast ze zbie»no±ci podci¡gu {ank
} do liczby α wynika, »e

∃K1 ∈ N ∀ k ≥ K1 |ank
− α| < ε.

Poniewa» {nk} jest rosn¡cy i rozbie»ny do ∞, wi¦c

∃N 3 K2 > K1 ∀k ≥ K2 nk ≥ N.

Wtedy dla ka»dego k ≥ max{K1, K2} mamy

|ank
− α| < ε

oraz
|ank

− an| < ε,

o ile n > N , wi¦c dla takich n

|an − α| ≤ |an − ank
|+ |ank

− α| < 2ε,

czyli limn→∞ an = α. tu
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2.53. Fakt. W zbiorze punktów skupienia ci¡gu ograniczonego istnieje element na-
jmniejszy i najwi¦kszy.

Dowód . Niech b¦dzie dany ci¡g xn ∈ [a, b]. Jest jasne, »e zbiór jego punktów
skupienia A speªnia warunek A ⊂ [a, b], wi¦c jest ograniczony. Aby dowie±¢ tezy,
poka»emy, »e β = sup A jest elementem zbioru A. Analogicznie pokazuje si¦, »e
α = inf A ∈ A.
Niech ak ∈ A b¦dzie rosn¡cym ci¡giem zbie»nym do β. Zde�niujemy indukcyjnie

podci¡g {xnk
} ci¡gu {xn}, taki »e

(2.54) ak −
1

k
< xnk

< ak +
1

k
, k ∈ N.

Niech a1 − 1 < xn1 < a1 + 1. Przypu±¢my, »e zostaªy ju» zde�niowane wyrazy
xn1 , xn2 , . . . xnk

, gdzie n1 < n2 < · · · < nk, speªniaj¡ce powy»sze warunki. Ze wzgl¦-
du na to, »e istnieje niesko«czenie wiele n, dla których

ak+1 −
1

k + 1
< xn < ak+1 +

1

k + 1
,

znajdzie si¦ w±ród nich n = nk+1 > nk. Podci¡g {xnk
} zostaª wi¦c zde�niowany.

Z (2.54) wynika natychmiast, »e granic¡ {xnk
} jest β. tu

Niech A b¦dzie zbiorem wszystkich punktów skupienia ograniczonego ci¡gu licz-
bowego {xn}n∈N. Wtedy granic¡ górn¡ ci¡gu {xn} nazywamy najwi¦kszy element
zbioru A i piszemy

lim sup
n→∞

xn = lim
n→∞

xn = sup A,

natomiast granic¡ doln¡ ci¡gu {xn} nazywamy najmniejszy element zbioru A
i piszemy

lim inf
n→∞

xn lim
n→∞

xn = inf A.

Czytelnik sam mo»e si¦ ªatwo przekona¢ o prawdziwo±ci poni»szych faktów:

2.55. Fakt. Dla dowolnego ci¡gu ograniczonego {an} zachodzi nast¦puj¡ca nierów-
no±¢:

lim inf
n→∞

an ≤ lim sup
n→∞

an.

2.56. Fakt. Ci¡g ograniczony {an} jest zbie»ny wtedy i tylko wtedy, gdy

lim inf
n→∞

an = lim sup
n→∞

an.

2.57. Fakt. Liczba α jest granic¡ doln¡ ograniczonego ci¡gu {an} wtedy i tylko
wtedy, gdy

∀ε > 0 istnieje niesko«czenie wiele wyrazów takich, »e an < α + ε
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oraz

∀ε > 0 istnieje tylko sko«czenie wiele wyrazów takich, »e an < α− ε.

Zauwa»my, »e pierwszy warunek powy»szej koniunkcji równowa»ny jest temu, »e
lim inf an ≤ α, a drugi nierówno±ci przeciwnej.

2.58. Fakt. Liczba β jest granic¡ górn¡ ograniczonego ci¡gu {an} wtedy i tylko
wtedy, gdy

∀ε > 0 istnieje niesko«czenie wiele wyrazów takich, »e an > β − ε

oraz

∀ε > 0 istnieje tylko sko«czenie wiele wyrazów takich, »e an > β + ε.

I tutaj pierwszy warunek koniunkcji równowa»ny jest nierówno±ci lim sup an ≥ β,
a drugi nierówno±ci przeciwnej.
Trudne poj¦cie granic ekstremalnych zilustrujemy dowodem nast¦puj¡cego faktu.

2.59. Fakt. Niech {an} b¦dzie ci¡giem ograniczonym o wyrazach dodatnich. Wtedy

lim sup
n→∞

n
√

an ≤ lim sup
n→∞

an+1

an

.

Dowód . Niech β = lim supn→∞
an+1

an
. Aby udowodni¢ »¡dan¡ nierówno±¢ wystar-

czy pokaza¢, »e dla dowolnego ε > 0

lim sup
n→∞

n
√

an ≤ β + ε.

W tym celu zauwa»my, »e na mocy Faktu 2.58 istnieje N ∈ N, takie »e
an+1

an

≤ β + ε, n > N.

Zatem dla n > N

an =
an

an−1

· an−1

an−2

. . .
aN+1

aN

aN ≤ (β + ε)n−NaN

=
aN

(β + ε)N
(β + ε)n = CN(β + ε)n,

gdzie CN = aN

(β+ε)N , a st¡d
n
√

an ≤ n
√

CN (β + ε)

i wobec tego

lim sup
n→∞

n
√

an ≤ lim sup
n→∞

n
√

CN (β + ε)

= lim
n→∞

n
√

CN (β + ε) = β + ε,

czego nale»aªo dowie±¢. tu
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Funkcjami elementarnymi b¦dziemy nazywa¢ funkcj¦ to»samo±ciow¡ x 7→ x,
funkcj¦ wykªadnicz¡, funkcje trygonometryczne oraz wszystkie funkcje, jakie mo»-
na otrzyma¢ z wy»ej wymienionych drog¡ nast¦puj¡cych operacji: ograniczania
dziedziny, dodawania, mno»enia, dzielenia i odwracania funkcji, gdy jest to mo»liwe.
Tak wi¦c w±ród funkcji elementarnych znajd¡ si¦ tak»e funkcja logarytmiczna,
wielomiany, funkcje wymierne, koªowe, hiperboliczne i wiele innych.
W tym rozdziale podamy precyzyjne de�nicje tych funkcji i wypunktujemy ich

najprostsze wªasno±ci.

Pot¦g¦ liczby dodatniej a o wykªadniku naturalnym de�niujemy induk-
cyjnie: {

a0 = 1,

an+1 = a · an.

Nast¦puj¡ce wªasno±ci pot¦gi o wykªadniku naturalnym dowolnej liczby a > 0
s¡ oczywiste:

(1) an > 0,

(2) an+m = anam,

(3) je±li a > 1 i n < m, to an < am.

3.1. Twierdzenie. Dla ka»dej liczby dodatniej a i ka»dego naturalnego n 6= 0
istnieje liczba dodatnia y taka, »e yn = a.

Dowód . Ustalmy dowolnie liczb¦ a > 0 oraz n ∈ N. Niech

E = {x ≥ 0: xn < a}.
Zauwa»my, »e E jest niepusty (bo 0 ∈ E) i ograniczony, gdy»

a < 1 ⇒ E ⊆ [0, 1]

oraz
a ≥ 1 ⇒ E ⊆ [0, a].

St¡d E ma kres górny. Niech
y = sup E.

Oczywi±cie y jest liczb¡ nieujemn¡. Poka»emy, »e y jest szukan¡ liczb¡, tzn. yn = a.
Zauwa»my najpierw, »e je±li

E 3 xk
k→∞−−−→ y,

to
∀k ∈ N x n

k ≤ a,
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wi¦c na mocy Wniosku 2.9 (i wªasno±ci (c) z Twierdzenia 2.19)

yn ≤ a.

Wystarczy zatem pokaz¢, »e yn ≥ a. W tym celu, zauwa»my, »e dla ka»dego k ∈ N
jest y + 1

k
/∈ E, wi¦c (

y +
1

k

)n

≥ a,

a st¡d po przej±ciu do granicy yn ≥ a. Teraz wida¢ te», »e y > 0. tu

3.2. Fakt. Niech a > 0 i n ∈ N. Je±li dla y1, y2 > 0 zachodzi y n
1 = a = y n

2 ,
to y1 = y2.

Dowód . Skoro (
y1

y2

)n

=
y n

1

y n
2

=
a

a
= 1,

to
y1

y2

= 1,

co daje tez¦. tu

Mo»emy teraz wprowadzi¢ nast¦puj¡ce de�nicje. Je±li n ∈ N i a > 0 jest liczb¡
rzeczywist¡, to pierwiastkiem arytmetycznym stopnia n z liczby a nazy-
wamy tak¡ liczb¦ x > 0, »e xn = a. Piszemy wtedy

x = n
√

a = a
1
n .

Pot¦g¦ liczby dodatniej a o wykªadniku wymiernym w = p
q
, gdzie p ∈ Z,

q ∈ N, de�niujemy nast¦puj¡co:

aw = a
p
q =

{
q
√

ap, p > 0(
1
a

)− p
q = q

√(
1
a

)−p
, p < 0.

Oczywi±cie dla pot¦gi o wykªadniku wymiernym wªasno±ci (1) - (3) s¡ równie»
speªnione.

Pot¦g¦ liczby dodatniej a o wykªadniku rzeczywistym x de�niujemy
nast¦puj¡co:

ax = sup{aw : Q 3 w ≤ x},
gdy a ≥ 1, oraz

ax =
(1

a

)−x

,

gdy 0 < a < 1.

Aby wykaza¢, »e de�nicja ta ma sens, wystarczy sprawdzi¢, »e dla dowolnego
x ∈ R zbiór

E(x) = {aw : Q 3 w ≤ x}
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ma kres górny. Ale a[x] ∈ E(x), bo [x] ≤ x, wi¦c E(x) 6= ∅. Ponadto

aw ∈ E(x) ⇒ aw < a[x]+1,

wi¦c w ≤ [x] + 1, co oznacza, »e E(x) jest ograniczony od góry.

Sprawd¹my teraz, »e pot¦ga o wykªadniku rzeczywistym zachowuje wªasno±ci
(1) - (3). Oczywi±cie ax ≥ a[x] > 0, bo [x] ∈ Q, co dowodzi (1).
Zamierzamy teraz pokaza¢, »e

ax+y = sup E(x + y) = sup E(x) · sup E(y) = ax · ay.

Niech Q 3 w ≤ x oraz Q 3 v ≤ y. Wtedy w + v ≤ x + y, wi¦c

aw · av = aw+v ∈ E(x + y),

sk¡d
aw · av ≤ ax+y.

Poniewa»
∀Q 3 w ≤ x aw · av ≤ ax+y,

wi¦c
sup{aw · av : Q 3 w ≤ x} = ax · av ≤ ax+y.

Analogicznie

∀Q 3 v ≤ y ax · av ≤ ax+y ⇒ ax · ay ≤ ax+y.

Pozostaje jeszcze dowie±¢ nierówno±ci przeciwnej. W tym celu we¹my dowolne

Q 3 u ≤ x + y

Czytelnik sam sprawdzi, »e istniej¡ w, v ∈ Q, takie »e u = w + v i w ≤ x, v ≤ y.
Wtedy

au = aw+v = aw · av ≤ ax · ay,

sk¡d
ax+y = sup{au : Q 3 u ≤ x + y} ≤ ax · ay.

Zatem i wªasno±¢ (2) jest speªniona. Przechodz¡c do dowodu (3) zauwa»my, »e
je±li x < y, to

∃u, v ∈ Q x < u < v < y,

wi¦c

ax = sup{aw : Q 3 w ≤ x} ≤ au < av ≤ sup{aw : Q 3 w ≤ y} = ay,

bo (3) zachodzi dla wykªadników wymiernych u < v.

Zauwa»my jeszcze, »e dla ka»dego a ≥ 1 i ka»dego x ∈ R

(3.3) |ax − 1| ≤ a|x| − 1.

Rzeczywi±cie, je±li x ≥ 0, mamy po prostu równo±¢, a je±li x < 0, to

|ax − 1| = 1− ax = ax(a−x − 1) < a−x − 1 = a|x| − 1,

bo ax < 1.



36 Analiza B

Dla dowolnego a > 0 funkcj¦

R 3 x 7−→ ax ∈ (0,∞)

nazywamy funkcj¡ wykªadnicz¡ o podstawie a. Je±li a = e, to funkcj¦

x 7−→ ex

nazywamy po prostu funkcj¡ wykªadnicz¡.

3.4. Twierdzenie. Niech a > 0. Wtedy

xn
n→∞−−−→ x ∈ R ⇒ axn n→∞−−−→ ax.

Dowód . Przyjmijmy najpierw, »e a ≥ 1 i 0 6= xn → 0. Dzi¦ki nierówno±ci (3.3)
wystarczy rozpatrzy¢ przypadek xn > 0. Niech ε > 0 i niech xn ≤ wn < 2xn, gdzie
wn ∈ Q. Na mocy nierówno±ci Bernoulliego

(1 + ε)1/xn > (1 + ε)1/wn > 1 +
ε

wn

> 1 +
ε

2xn

> a,

je±li n jest dostatecznie du»e, czyli

axn − 1 < ε,

a to dowodzi naszej tezy.
Je±li teraz xn → x, to

|axn − ax| = ax|ayn − 1|,
gdzie yn = xn − x → 0 i mo»emy skorzysta¢ z ju» przeprowadzonej cz¦±ci dowodu.
Wreszcie, gdy 0 < a < 1, to

axn =
(1

a

)−xn

−→
(1

a

)−x

= ax,

co ko«czy dowód. tu

Obecnie mo»emy uzasadni¢ nierówno±¢ Bernoulliego dla wykªadników niewy-
miernych.

3.5. Wniosek. Dla ka»dego 1 ≤ y ∈ R i ka»dego x > −1 zachodzi nierówno±¢

(1 + x)y ≥ 1 + yx.

Dowód . Rzeczywi±cie, niech αn ≥ y b¦dzie ci¡giem liczb wymiernych zbie»nym
do y. Wtedy na mocy Twierdzenia 3.4

(1 + x)y = lim
n→∞

(1 + x)αn

≥ lim
n→∞

(1 + αnx) = 1 + yx

dla x > −1. tu
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Zwró¢my przy okazji uwag¦, »e dla 0 < y < 1 zachodzi nierówno±¢ przeciwna

(1 + x)y ≤ 1 + yx, x > −1,

co ªatwo wydedukowa¢ z nierówno±ci Bernoulliego, podnosz¡c obie strony do po-
t¦gi 1/y. Z tej za± nierówno±ci natychmiast wynika kolejna

(3.6) ex ≤ 1 + (e− 1)x

dla 0 ≤ x ≤ 1. W tej ostatniej nierówno±ci mogliby±my zreszt¡ zast¡pi¢ e przez
jak¡kolwiek liczb¦ a > 0.

Podobnie jak Wniosku 3.5 dowodzimy nierówno±ci

(3.7) (1 + x)α < 1 + xα

dla x > 0 i 0 < α ≤ 1, wychodz¡c od Wniosku 1.5.

3.8. Twierdzenie. Niech 0 < an → a > 0. Wtedy dla ka»dego x ∈ R

ax
n

n→∞−−−→ ax.

Dowód . �atwo zredukowa¢ dowód do sytuacji, gdy a = 1 i x > 0, co pozosta-
wiamy Czytelnikowi jako ¢wiczenie.
Niech najpierw x ≥ 1. Niech 0 < ε ≤ 1

2
. Wtedy dla dostatecznie du»ych n ∈ N

an > 1− ε

x
, 1/an > 1− ε

x
,

wi¦c

ax
n >

(
1− ε

x

)x

≥ 1− ε, (1/an)x >
(
1− ε

x

)x

≥ 1− ε,

sk¡d

1− ε < ax
n <

1

1− ε
≤ 1 + 2ε,

tak jak chcieli±my. Mamy bowiem

1

1− ε
=

1− ε + ε

1− ε
= 1 +

ε

1− ε
≤ 1 + 2ε.

Je±li natomiast 0 < x < 1, rozumujemy podobnie. Dla dostatecznie du»ych
n ∈ N

an < 1 +
ε

x
, 1/an < 1 +

ε

x
,

wi¦c

ax
n <

(
1 +

ε

x

)x

≤ 1 + ε, (1/an)x <
(
1 +

ε

x

)x

≤ 1 + ε,

sk¡d

1− ε ≤ 1

1 + ε
< ax

n < 1 + ε,

co ko«czy dowód. tu
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3.9. Fakt. Je±li 1 < an →∞, to

An =
(
1 + 1/an

)an −→ e, Bn =
(
1− 1/an

)−an −→ e,

Dowód . Przyjmijmy najpierw, »e an ∈ N. Wtedy wszystkie wyrazy ci¡gu {An}
s¡ równie» wyrazami ci¡gu o wyrazach

en =
(
1 + 1/n

)n
z co najwy»ej sko«czon¡ ilo±ci¡ powtórze«, wi¦c

lim
n→∞

An = lim
n→∞

en = e.

Dla dowolnego ci¡gu {an} skorzystamy z twierdzenia o trzech ci¡gach. Mamy
bowiem (

1 +
1

[an] + 1

)[an]

≤ An ≤
(

1 +
1

[an]

)[an]+1

i na mocy pierwszej cz¦±ci dowodu skrajne ci¡gi s¡ zbie»ne do e.
Druga cz¦±¢ tezy wynika z równo±ci

Bn =
( an

an − 1

)an

=
(
1 +

1

an − 1

)an

i wcze±niejszych rozwa»a«. tu

3.10. Twierdzenie. Dla ka»dego x ∈ R

(3.11) lim
|x|≤n→∞

(
1 + x/n

)n
= ex.

Dowód . Je±li x = 0, teza jest trywialna. Je±li x 6= 0, to an = n
x
→ ±∞ zale»nie

od znaku x. W obu przypadkach(
1 + x/n

)n
=

((
1 + 1/an

)an

)x

−→ ex

na mocy Faktu 3.9 i Twierdzenia 3.8. tu

Przyjrzyjmy si¦ jeszcze ci¡gowi (3.11). Je±li x 6= 0 i n ≥ |x|, to z nierówno±ci
Bernoulliego wynika, »e(

1 +
x

n + 1

)n+1

=

((
1 +

x

n + 1

)n+1
n

)n

>
(
1 +

x

n

)n

,

a wi¦c ci¡g ten dla n ≥ |x| jest ±ci±le rosn¡cy.

3.12. Wniosek. Dla ka»dego x 6= 0

ex > 1 + x.
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Dla ka»dego 0 6= x < 1

ex < 1 +
x

1− x
.

Dowód . Je±li x 6= 0, to dzi¦ki nierówno±ci Bernoulliego(
1 + x/n

)n
> 1 + x,

wi¦c po przej±ciu do granicy i skorzystaniu z tego, »e ci¡g (3.11) jest rosn¡cy,
otrzymujemy

ex > 1 + x.

St¡d, je±li dodatkowo x < 1,

ex =
1

e−x
<

1

1− x
= 1 +

x

1− x
,

co ko«czy dowód. tu

3.13. Lemat. Dla ustalonego x > 0 niech

an =
n∑

k=0

xk

k!
, bn =

n∑
k=0

(−x)k

k!
.

Wtedy

anbn = 1 + cn,

gdzie cn → 0.

Dowód . Mamy

anbn =
∑

0≤k,j≤n

xk(−x)j

k!j!

= 1 +
∑

0<k+j≤n

xk(−x)j

k!j!
+

∑
1≤k,j≤n i k+j>n

xk(−x)j

k!j!

= 1 + dn + cn = 1 + cn,

bo

dn =
n∑

p=1

1

p!

∑
k+j=p

(
p

k

)
xk(−x)j,

gdzie ∑
k+j=p

(
p

k

)
xk(−x)j =

(
x + (−x)

)p
= 0.
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Aby zako«czy¢ dowód, oszacujemy warto±¢ bezwzgl¦dn¡ cn przez ci¡g zbie»ny
do zera. Istotnie,

|cn| ≤
∑

1≤k,j≤n i k+j>n

xk+j

k!j!
≤

∑
n<k+j≤2n

xk(−x)j

k!j!

≤
2n∑

p=n+1

xp

p!

∑
k+j=p

(
p

k

)
=

2n∑
p=n+1

(2x)p

p!

≤ (2x + 1)2n

2n∑
p=n+1

1

p!
<

(2x + 1)2n

n! · n
,

a ten ci¡g d¡»y do zera. Ostatnie oszacowanie pochodzi z Przykªadu 2.30. tu

3.14. Twierdzenie. Dla ka»dego x ∈ R

ex = lim
n→∞

n∑
k=0

xk

k!
.

Dowód . Dla x = 0 równo±¢ jest oczywista. Dla x > 0 rozumowanie jest identy-
czne, jak w przypadku x = 1 (patrz rozdziaª 2), wi¦c je pominiemy. Wreszcie, tez¦
dla x < 0 otrzymujemy jako wniosek z przypadku x > 0, stosuj¡c Lemat 3.13. tu

3.15. Wniosek. Dla ka»dego |x| ≤ 1 i ka»dego n ∈ N

ex =
n−1∑
k=0

xk

k!
+ rn(x),

gdzie

|r1(x)| ≤ (e− 1)|x|, |rn(x)| ≤ |x|n

(n− 1)!(n− 1)
, n ≥ 2.

Dowód . Jak ªatwo zauwa»y¢

rn(x) = lim
m→∞

m∑
k=n

xk

k!
.

Jak wiemy z Przykªadu 2.30, dla n ≥ 2∣∣∣∣ m∑
k=n

xk

k!

∣∣∣∣ ≤ m∑
k=n

|x|k

k!
≤ |x|n

m∑
k=n

1

k!
<

|x|n

(n− 1)!(n− 1)
,

bo |x| ≤ 1. Oszacowanie dla n = 1 wida¢ bezpo±rednio. Zatem po przej±ciu do
niesko«czono±ci z m, wida¢, »e reszty rn speªniaj¡ »¡dane nierówno±ci. tu
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Warto dobrze zapami¦ta¢ najprostsze przypadki tej nierówno±ci:

ex = 1 + r1(x) = 1 + x + r2(x)

= 1 + x + x2/2 + r3(x), |x| ≤ 1,

gdzie
|r1(x)| ≤ (e− 1)|x|, |r2(x)| ≤ |x|2, |r3(x)| ≤ |x|3/4.

Dla oznaczenia funkcji wykªadniczej b¦dziemy te» u»ywali symbolu

exp x = ex.

3.16. Fakt. Obrazem R przez funkcj¦ wykªadnicz¡ jest caªa póªprosta dodatnia.
Innymi sªowy,

exp(R) = (0,∞).

Dowód . Niech dla y > 0

E = {x ∈ R : ex < y}.
Poniewa»

e−1/y < y < ey,

zbiór E jest niepusty i ograniczony z góry. Niech a = sup E. Istnieje ci¡g o wyrazach
xn ∈ E zbie»ny do a, wi¦c

ea = lim
n→∞

exn ≤ y.

Z drugiej strony a + 1/n /∈ E, wi¦c

ea = lim
n→∞

ea+1/n ≥ y,

co ko«czy dowód. tu

St¡d i z wªasno±ci (3) pot¦gi wnioskujemy, »e funkcja wykªadnicza

exp : R → (0,∞)

jest wzajemnie jednoznacznym przeksztaªceniem R na póªprost¡ (0,∞). Istnieje
zatem funkcja do niej odwrotna

log : (0,∞) → R,

któr¡ nazywamy funkcj¡ logarytmiczn¡.

Nast¦puj¡ce wªasno±ci funkcji logarytmicznej wynikaj¡ wprost z de�nicji:

(1) log 1 = 0, log e = 1,

(2) log x · y = log x + log y, x, y > 0,

(3) log xy = y log x, x > 0, y ∈ R,
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(4) ax = ex log a, a > 0, x ∈ R,

(5) log jest funkcj¡ ±ci±le rosn¡c¡.

Poni»sze nierówno±ci maj¡ podstawowe znaczenia dla badania funkcji logaryt-
micznej.

3.17. Wniosek. Dla ka»dego 0 6= x > −1
x

1 + x
< log(1 + x) < x.

Dowód . Logarytmuj¡c pierwsz¡ z nierówno±ci Wniosku 3.12 dla 0 6= x > −1,
otrzymujemy drug¡ z nierówno±ci dla logarytmu. Druga z nierówno±ci Wnios-
ku 3.12

ex < 1 +
x

1− x
, 0 6= x < 1,

po podstawieniu y = x
1−x

> −1, daje

e
y

1+y < 1 + y, y > −1,

a st¡d przez zlogarytmowanie otrzymujemy pierwsz¡ z naszych nierówno±ci. tu

Dla x = 1
n
otrzymujemy

3.18. Wniosek. Dla ka»dego n ∈ N

1

n + 1
< log

(
1 +

1

n

)
<

1

n
.

3.19. Wniosek. Dla ka»dego 0 < α ≤ 1 i ka»dego x > 0

log(1 + x) <
1

α
xα.

Dowód . Mamy

α log(1 + x) = log(1 + x)α ≤ log(1 + xα) < xα,

sk¡d po podzieleniu przez α dostajemy »¡dan¡ nierówno±¢. Skorzystali±my tu
z nierówno±ci (3.7). tu

Stosuj¡c twierdzenie Stoltza nietrudno si¦ przekona¢, »e

lim
n→∞

an

bn

= lim
n→∞

∑n
k=1

1
k

log n
= 1.

Rzeczywi±cie, {bn} jest ci¡giem ±ci±le rosn¡cym i rozbie»nym do niesko«czono±ci
oraz

a′n−1

b′n−1

=
1/n

log(1 + 1/n)
−→ 1,
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na mocy Wniosku 3.18 i twierdzenia trzech ci¡gach. Obecnie jeste±my ju» gotowi,
aby wskaza¢ na jeszcze ±ci±lejszy zwi¡zek obu tych ci¡gów.

3.20. Lemat. Ci¡g

γn =
n∑

k=1

1

k
− log n

jest zbie»ny.

Dowód . Zwró¢my najpierw uwag¦, »e

log(n + 1)− log n = log(1 + 1/n) −→ 0,

wi¦c wystarczy rozwa»a¢ ci¡g

cn =
n∑

k=1

1

k
− log(n + 1)

=
n∑

k=1

1

k
−

n∑
k=1

(
log(k + 1)− log k

)
=

n∑
k=1

(1

k
− log(1 + 1/k)

)
.

Z Wniosku 3.18 wynika, »e ci¡g {cn} jest rosn¡cy, a ponadto
n∑

k=1

(1

k
− log(1 + 1/k)

)
<

n∑
k=1

(1

k
− 1

k + 1

)
= 1− 1

n + 1
< 1,

wi¦c jest równie» ograniczony. Jest zatem zbie»ny, a przecie» o to chodziªo. tu

Granic¦ ci¡gu {γn} b¦dziemy oznacza¢ przez γ i nazywa¢ staª¡ Eulera. Zatem

(3.21) γ = lim
n→∞

n∑
k=1

1

k
− log n = lim

n→∞

n∑
k=1

(
1

k
− log

(
1 +

1

k

))
.

Dokªadne oszacowanie staªej Eulera musimy odªo»y¢ na du»o pó¹niej. Na razie
wspomnijmy tylko o tym, »e nie wiadomo nawet, czy jest ona liczb¡ wymiern¡, czy
nie.

Przechodzimy teraz do de�nicji funkcji hiperbolicznych i trygonometrycznych.
Funkcje

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
nazywamy odpowiednio cosinusem i sinusem hiperbolicznym. Wprost z de�-
nicji ªatwo wynikaj¡ nat¦puj¡ce wªasno±ci tych funkcji. Cosinus hiperboliczny jest
funkcj¡ parzyst¡, a sinus nieparzyst¡. Ponadto zachodzi wzór

cosh2 x− sinh2 x = 1,

zwany jedynk¡ hiperboliczn¡. Nietrudno te» spostrzec, »e sinh jako suma dwóch
funkcji ±ci±le rosn¡cych jest funkcj¡ ±ci±le rosn¡c¡. St¡d i z jedynki trygonometry-
cznej wnioskujemy, »e cosh jest funkcj¡ ±ci±le rosn¡c¡ na póªprostej [0,∞). Wreszcie
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z Twierdzenia 3.14 wynika, i»

cosh x = lim
n→∞

n∑
k=0

x2k

(2k)!
, sinh x = lim

n→∞

n∑
k=0

x2k+1

(2k + 1)!
.

Wbrew pozorom podanie ±cisªej analitycznej de�nicji funkcji trygonometrycz-
nych nie jest wcale proste. Jednym z mo»liwych rozwi¡za« jest skorzystanie z na-
st¦puj¡cego twierdzenia.

3.22. Twierdzenie. Istnieje dokªadnie jedna para funkcji

s : R 7→ R, c : R 7→ R

o nast¦puj¡cych wªasno±ciach. Dla wszystkich x, y ∈ R

(1) s(x)2 + c(x)2 = 1,
(2) s(x + y) = s(x)c(y) + s(y)c(x),
(3) c(x + y) = c(x)c(y)− s(x)s(y),
(4) 0 < xc(x) < s(x) < x dla 0 < x < 1.

S¡ to oczywi±cie niektóre z dobrze znanych wªasno±ci funkcji trygononome-
trycznych cosinusa i sinusa. Nasze twierdzenie mówi, »e wyszczególnione wy»ej
wªasno±ci s¡ aksjomatyczne w tym sensie, »e mo»na z nich wywie±¢ wszystko,
co sk¡din¡d wiemy o funkcjach trygonometrycznych, a tak»e »e s¡ one wystar-
czaj¡ce do jednoznacznego okre±lenia tych funkcji. Nawiasem mówi¡c, ta druga
cz¦±¢ twierdzenia (jednoznaczno±¢) przysparza wi¦cej kªopotu. Cz¦±¢ pierwsza jest
bardziej elementarna, cho¢ nieco »mudna.
Ze wzgl¦du na brak czasu nie b¦dziemy dowodzi¢ tego twierdzenia, ani nawet

systematycznie wyprowadza¢ pozostaªych wªasno±ci funkcji trygonometrycznych.
Podkre±lmy jednak wyra¹nie, »e np. ci¡gªo±¢ funkcji trygonometrycznych, jak i
okresowo±¢ wraz z wszystkimi innymi ich cechami s¡ na mocy Twierdzenia 3.22
konsekwencj¡ wªasno±ci (1) { (4).
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W niniejszym rozdziale zgodnie z jego tytuªem wprowadzamy poj¦cie granicy
funkcji, de�niujemy funkcje ci¡gªe i omawiamy ich podstawowe wªasno±ci.

De�nicja. [Heine] Niech f : R ⊇ D → R. Niech x0 ∈ R b¦dzie taki, by istniaªy
liczby a < x0 < b takie, »e (a, x0) ∪ (x0, b) ⊆ D. Mówimy, »e funkcja f ma w
punkcie x0 granic¦ wªa±ciw¡ równ¡ g, je±li(

∀ {xn}n∈N ⊆ (a, x0) ∪ (x0, b)
) (

xn
n→∞−−−→ x0 ⇒ f(xn)

n→∞−−−→ g
)
.

Piszemy wówczas
lim

x→x0

f(x) = g.

4.1. Przykªad. Zauwa»my, »e

(4.2) lim
x→0

sin x = 0,

gdy» je±li xn
n→∞−−−→ 0, to równie» |xn|

n→∞−−−→ 0, a skoro

| sin xn| ≤ |xn|
n→∞−−−→ 0,

to tak»e
sin xn

n→∞−−−→ 0.

Wynika st¡d natychmiast, »e
lim
x→0

cos x = 1,

gdy» je±li xn
n→∞−−−→ 0, to od pewnego miejsca |xn| < π

2
i wtedy

cos xn = (1− sin2 xn)
1
2

n→∞−−−→ 1.

4.3. Przykªad. Obliczymy granic¦ funkcji

f : R \ {0} 3 x 7−→ sin x

x
∈ R

w punkcie x0 = 0. Zauwa»my, »e dla dowolnego x > 0 mamy

sin x < x <
sin x

cos x
,

a zatem
1

sin x
>

1

x
>

cos x

sin x
,

i skoro sin x > 0,

cos x <
sin x

x
< 1.

Poniewa» sinus jest funkcj¡ nieparzyst¡, a cosinus parzyst¡, ta sama nierówno±¢
obowi¡zuje te» dla x < 0.
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We¹my teraz dowolny ci¡g 0 6= xn
n→∞−−−→ 0. Poniewa» dla du»ych n

cos xn <
sin xn

xn

< 1

oraz
lim
x→0

cos x = 1,

wi¦c

lim
x→0

sin x

x
= 1.

4.4. Przykªad. Rozwa»my funkcj¦

f : R \ {0} 3 x 7−→ x sin(1/x) ∈ R.

Zauwa»my, »e
lim
x→0

f(x) = lim
x→0

x sin(1/x) = 0,

gdy» dla dowolnego ci¡gu 0 6= xn
n→∞−−−→ 0 mamy

|xn sin(1/xn)| = |xn| · | sin(1/xn)| ≤ |xn|
n→∞−−−→ 0.

4.5. Przykªad. Funkcja f : R → [0, 1) zadana wzorem

f(x) = m(x)

nie ma granicy w »adnym punkcie x0 = c ∈ Z, gdy» na przykªad dla ci¡gów

xn = c− 1

2n

n→∞−−−→ c, yn = c +
1

2n

n→∞−−−→ c

otrzymujemy

f(xn) = m
(
c− 1

2n

)
= 1− 1

2n

n→∞−−−→ 1,

f(yn) = m
(
c +

1

2n

)
=

1

2n

n→∞−−−→ 0.

4.6. Przykªad. W podobny sposób poka»emy, »e funkcja

f : R \ {0} 3 x 7−→ sin
1

x
∈ R

nie ma granicy w punkcie x0 = 0. Rozwa»my bowiem ci¡gi

xn =
(π

2
+ 2πn

)−1 n→∞−−−→ 0, yn = (2πn)−1 n→∞−−−→ 0.

Otrzymujemy

∀n ∈ N f(xn) = sin
(π

2
+ 2πn

)
= 1,

oraz
∀n ∈ N f(yn) = sin(2πn) = 0,

zatem
lim

n→∞
f(xn) = 1 6= 0 = lim

n→∞
f(yn).
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4.7. Przykªad. Sprawdzimy jeszcze, »e dla a > 0

lim
x→0

ax − 1

x
= log a.

Mamy bowiem na mocy Wniosku 3.15

ax − 1

x
=

ex log a − 1

x
= log a +

r2(x log a)

x
,

gdzie dla |x| dostatecznie bliskich zera |r2(x log a)| ≤ x2 log2 a, co pokazuje, »e
drugi skªadnik sumy d¡»y do zera.

4.8. Przykªad. Niech 0 < a ≤ b. Wtedy dla ka»dego x 6= 0

a ≤
(

ax + bx

2

)1/x

≤ b,

wi¦c wyra»enie stoj¡ce w ±rodku, oznaczmy je przez Sx(a, b), mo»na uwa»a¢ za
rodzaj ±redniej liczb a, b. I rzeczywi±cie,

S−1(a, b) =

(
a−1 + b−1

2

)−1

, S1(a, b) =
a + b

2

s¡ odpowiednio ±redni¡ harmoniczn¡ i arytmetyczn¡ tych liczb. Poka»emy, »e

lim
x→0

Sx(a, b) =
√

ab.

W tym celu zauwa»my najpierw, »e

Sx(a, b) = a

(
1 + cx

2

)1/x

= aF (x),

gdzie c = b/a ≥ 1. Mamy wi¦c

F (x) = exp
(1

x
log

1 + cx

2

)
,

gdzie wykªadnik speªnia nierówno±ci

cx − 1

x(cx + 1)
<

1

x
log

1 + cx

2
<

cx − 1

2x
.

Na mocy poprzedniego przykªadu obie skrajne funkcje d¡»¡ do log c
2
, wi¦c

lim
x→0

F (x) = e
log c

2 =
√

c =

√
b

a
,

a st¡d natychmiast wynika nasza teza.

Podamy teraz inn¡ de�nicj¦ granicy funkcji w punkcie, która, jak poka»emy za
chwil¦, oka»e si¦ równowa»na.
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De�nicja. [Cauchy] Niech f : R ⊇ D → R. Niech x0 ∈ R b¦dzie taki, »e istniej¡
liczby a < x0 < b takie, »e (a, b) \ {x0} ⊆ D. Mówimy, »e funkcja f ma w
punkcie x0 granic¦ wªa±ciw¡ równ¡ g, je±li

∀ε > 0 ∃δ > 0 ∀x ∈ D
(

0 < |x− x0| < δ ⇒ |f(x)− g| < ε
)
.

4.9. Twierdzenie. Funkcja f ma w punkcie x0 granic¦ równ¡ g ∈ R w sensie
Heinego dokªadnie wtedy, gdy ma j¡ w sensie Cauchy'ego.

Dowód . Przypu±¢my, »e funkcja f ma granic¦ g w sensie Cauchy'ego równ¡ g.
We¹my dowolny ci¡g {xn} elementów dziedziny D funkcji f zbie»ny do punktu x0.
Chcemy pokaza¢, »e

f(xn)
n→∞−−−→ g.

Ustalmy w tym celu dowolnie liczb¦ ε > 0. Na mocy naszego zaªo»enia istnieje taka
liczba δ > 0, »e

|x− x0| < δ ⇒ |f(x)− g| < ε,

natomiast ze zbie»no±ci ci¡gu {xn} wynika, »e istnieje taka liczba N ∈ N, »e

n > N ⇒ |xn − x0| < δ.

Wobec tego dla takich n
|f(xn)− g| < ε.

Przypu±¢my teraz, »e funkcja nie ma granicy w sensie Cauchy'ego. Wtedy

∃ε > 0 ∀δ > 0 ∃x ∈ D
(
|x− x0| < δ ∧ |f(x)− g| ≥ ε

)
.

St¡d, dla ka»dego δn = 1
n
mo»emy znale¹¢ x0 6= xn ∈ D, takie »e

|xn − x0| <
1

n
oraz |f(xn)− g| ≥ ε.

Pierwsza nierówno±¢ mówi, »e ci¡g {xn} jest, zbie»ny do x0, a druga, »e ci¡g
warto±ci {f(xn)} nie jest zbie»ny do g, co oznacza, zgodnie z de�nicj¡ wedªug
Heinego, »e lim

x→x0

f(x) 6= g. tu

4.10. Przykªad. Zilustrujemy obie de�nicje na przykªadzie granicy w punkcie
x0 = 0 funkcji

f(x) = sin x2.

We¹my dowolny ci¡g liczb niezerowych {xn} zbie»ny do zera. Wtedy równie»

x2
n

n→∞−−−→ 0,

a st¡d, na mocy równo±ci (4.2),

sin x2
n

n→∞−−−→ 0,

co oznacza, »e
lim
x→0

sin x2 = 0

zgodnie z de�nicj¡ Heinego.
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Niech ε > 0. Poniewa» dla ka»dego x

| sin x2| < |x|2,

wi¦c je»eli |x| < δ =
√

ε, to

| sin x2| < |x|2 < δ2 = ε,

co oznacza, »e
lim
x→0

sin x2 = 0

zgodnie z de�nicj¡ Cauchy'ego.

4.11. Fakt (Arytmetyka granic). Je±li funkcje f i g maj¡ granice w punkcie x0, to
tak»e funkcje f + g oraz f · g maj¡ w tym punkcie granice i

(1) lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + lim
x→x0

g(x),

(2) lim
x→x0

(f · g)(x) = lim
x→x0

f(x) · lim
x→x0

g(x).

Ponadto, je±li lim
x→x0

g(x) 6= 0, to funkcja 1/g jest okre±lona w blisko±ci punktu x0 i

(3) lim
x→x0

1
g
(x) = 1

lim
x→x0

g(x)
.

Dowód tego faktu pozostawiamy Czytelnikowi jako ¢wiczenie, przy którym war-
to pami¦ta¢ o analogicznej arytmetyce granic ci¡gów. Zauwa»my jeszcze, »e w
dowolnym punkcie granica funkcji staªej okre±lonej na caªej prostej jest równa jej
warto±ci. St¡d natychmiast otrzymujemy nast¦puj¡ce wnioski.

4.12. Wniosek. Je±li funkcje f i g maj¡ granice w punkcie x0, to
(1) ∀α ∈ R lim

x→x0

α · f(x) = α · lim
x→x0

f(x),

(2) lim
x→x0

f(x)
g(x)

=
lim

x→x0
f(x)

lim
x→x0

g(x)
, o ile lim

x→x0

g(x) 6= 0.

4.13. Przykªad. Dla dowolnej liczby naturalnej n > 0

lim
x→1

xn − 1

x− 1
= n.

Wynika to z faktu, »e dla x 6= 1

xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x + 1,

gdzie ka»dy ze skªadników po prawej d¡»y do 1, gdy x → 1.

4.14. Przykªad. Poprzedni przykªad mo»na przy pewnym nakªadzie pracy uogól-
ni¢. Niech α, β ∈ R i niech β 6= 0. Wtedy

lim
x→1

xα − 1

xβ − 1
=

α

β
.
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Rzeczywi±cie, na mocy Wniosku 3.15

xα − 1

xβ − 1
=

eα log x − 1

eβ log x − 1
=

α log x + r2(α log x)

β log x + r2(β log x)
,

gdzie |r2(y)| ≤ y2 dla |y| ≤ 1, wi¦c

xα − 1

xβ − 1
=

α + r2(α log x)
log x

β + r2(β log x)
log x

,

gdzie ∣∣∣∣r2(γ log x)

log x

∣∣∣∣ ≤ |γ|| log x|

d¡»y do zera, gdy x d¡»y do 1, dla γ = α i γ = β, co dowodzi naszej tezy.

4.15. Przykªad. Granica w punkcie x0 = 0 funkcji

f : R \ {0} 3 x 7−→ cos x− 1

x
∈ R

istnieje i wynosi zero. Mamy bowiem

f(x) =
cos x− 1

x
=
−2 sin2(x/2)

x
= −sin(x/2)

x/2
· sin(x/2)

i poniewa» pierwszy czynnik d¡»y do 1, a drugi do 0, to wobec wªasno±ci (2)
z Faktu 4.11 otrzymujemy

lim
x→0

f(x) = lim
x→0

cos x− 1

x
= 0.

Zde�niujmy teraz granice jednostronne funkcji. Niech f : R ⊇ D → R oraz
(a, b) ⊆ D. Mówimy, »e f ma granic¦ wªa±ciw¡ lewostronn¡ w punkcie b
równ¡ α, je±li

∀{xn} ⊆ (a, b)
(

xn
n→∞−−−→ b ⇒ f(xn)

n→∞−−−→ α
)
,

lub równowa»nie

∀ε > 0 ∃ a < x0 < b ∀x ∈ D
(
x0 < x < b ⇒ |f(x)− α| < ε

)
.

Piszemy wtedy
lim

x→b−
f(x) = α.

W analogiczny sposób de�niujemy granic¦ prawostronn¡ funkcji w punkcie a,
któr¡ oznaczamy przez lim

x→a+
f(x).

4.16. Przykªad. Obliczmy obie granice jednostronne cz¦±ci uªamkowej w punkcie
x0 = 0. Poniewa» dla dowolnego ci¡gu liczb ujemnych {xn} zbie»nego do zera

∃N ∀n > N xn > −1,

wi¦c dla takich n
m(xn) = xn − [xn] = xn + 1,



4. Granica i ci¡gªo±¢ funkcji 51

sk¡d
m(xn)

n→∞−−−→ 1,

czyli
lim

x→0−
m(x) = 1.

Podobnie, w dowolnym ci¡gu liczb dodatnich {xn} zbie»nym do zera, od pewnego
miejsca wyrazy s¡ mniejsze od 1, wi¦c ich cz¦±¢ caªkowita wynosi 0. Oznacza to,
»e dla dostatecznie du»ych n

m(xn) = xn,

czyli
lim

x→0+
m(x) = 0.

4.17. Fakt. Je±li funkcja f ma w pewnym punkcie x0 obie granice jednostronne
oraz

lim
x→x0−

f(x) = lim
x→x0+

f(x) = α,

to funkcja f ma w punkcie x0 granic¦ równ¡ α.

Dowód . Posªu»ymy si¦ de�nicj¡ Cauchy'ego. Niech b¦dzie dany ε > 0. Z zaªo»e-
nia wynika, »e istniej¡ δ1 > 0 i δ2 >, takie »e

|f(x)− α| < ε, |f(y)− α| < ε,

o ile x0 − δ1 < x < x0 i x0 < y < x0 + δ2. Niech δ = min{δ1, δ2}. Z powy»szego
wida¢ natychmiast, »e je±li 0 < |z − x0| < δ, to |f(z)− α| < ε. tu

4.18. Przykªad. Poka»emy, »e funkcja

f(x) =

{
sin x dla x < 0

sinh x dla x ≥ 0

ma granic¦ w zerze. Istotnie, skoro dla dowolnego ci¡gu {xn} zbie»nego do zera
lim

n→∞
exn = e0 = 1 (por. Twierdzenie 3.4 wi¦c

lim
x→0

ex = 1,

a st¡d

lim
x→0+

f(x) = lim
x→0+

sinh x = lim
x→0+

ex − e−x

2

= lim
x→0

ex − e−x

2
= 0.

Ponadto
lim

x→0−
f(x) = lim

x→0−
sin x = lim

x→0
sin x = 0,

a zatem
lim
x→0

f(x) = 0.
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4.19. Przykªad. Sprawdzimy, »e

lim
x→0+

x log x = 0.

Rzeczywi±cie, niech (0, 1) 3 xn
n→∞−−−→ 0. Korzystaj¡c z nierówno±ci

log(1 + z) <
1

α
zα, z > 0, 0 < α ≤ 1,

dla α = 1/2, widzimy, »e

|xn log xn| =
∣∣xn log(1/xn)

∣∣ ≤ 2xn

√
1/xn − 1 ≤ 2

xn√
xn

= 2
√

xn,

sk¡d natychmiast wynika nasza teza.

De�nicja. Mówimy, »e funkcja f okre±lona na przedziale (a, b) jest ci¡gªa w
punkcie x0 ∈ (a, b), je»eli w tym punkcie granica funkcji istnieje i jest równa
warto±ci funkcji, czyli

lim
x→x0

f(x) = f(x0).

Mówimy, »e funkcja f okre±lona na przedziale [a, b] jest ci¡gªa w punkcie a
(odpowiednio b), je»eli w tym punkcie granica prawostronna (odp. lewostronna)
istnieje i jest równa warto±ci funkcji, czyli

lim
x→a+

f(x) = f(a)
(
odp. lim

x→b−
f(x) = f(b)

)
.

Mówimy, »e funkcja f okre±lona na zbiorze D jest ci¡gªa w przedziale I ⊆ D,
je»eli jest ci¡gªa w ka»dym punkcie tego przedziaªu.

4.20. Przykªad. W rozdziale 3 pokazali±my, »e

xn
n→∞−−−→ x ⇒ exp(xn)

n→∞−−−→ exp(x)

(zobacz Twierdzenie 3.4 Oznacza to, »e funkcja wykªadnicza

R 3 x 7−→ exp(x)

jest ci¡gªa w ka»dym punkcie x ∈ R.

Z Faktu 4.11 wynika natychmiast

4.21. Fakt. Ja»eli funkcje f , g s¡ ci¡gªe w pewnym punkcie x0 nale»¡cym do
dziedzin obu funkcji, to funkcje f + g oraz f · g tak»e s¡ ci¡gªe w tym punkcie.

4.22. Przykªad. Wielomian jest funkcj¡ ci¡gª¡ na R. Istotnie, ka»dy wielomian
jest funkcj¡ postaci

f(x) =
n∑

k=0

anx
n,

wystarczy zatem sprawdzi¢, »e dla dowolnych liczb α ∈ R oraz n ∈ N funkcja

R 3 x 7−→ αxn
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jest ci¡gªa. Jeszcze raz korzystaj¡c z powy»szego faktu, widzimy, »e caªa rzecz
sprowadza si¦ wi¦c do ci¡gªo±ci funkcji staªej i to»samo±ciowej x 7→ x, a to jest
oczywiste.

4.23. Przykªad. Jak wiemy funkcja logarytmiczna log : (0,∞) → R jest funkcj¡
odwrotn¡ do wykªadniczej, która jest ci¡gªa. To pozwala wnioskowa¢ o ci¡gªo±ci
funkci log. Rzeczywi±cie, niech xn → x wraz z n → ∞, gdzie x , xn > 0. Z Twier-
dzenia 2.50 wynika, »e wystarczy, je±li poka»emy, i» dla ka»dego zbie»nego do y
podci¡gu {ynk

}k∈N ci¡gu o wyrazach yn = log xn, jest y = log x.
Istotnie, na mocy naszych zaªo»e«

xnk
= eynk ,

gdzie ci¡g po lewej jest zbie»ny do x, a ten po prawej do ey. Zatem x = ey, czyli
y = log x.
W dowodzie Twierdzenia 4.38 poni»ej jeszcze raz skorzystamy z tego rozumowa-

nia, aby uogólni¢ powy»szy fakt. Tam te» Czytelnik znajdzie wi¦cej szczegóªów.

4.24. Lemat. Niech b¦d¡ dane ci¡gªe funkcje f, g : [a, b] → R. Je±li f(w) = g(w)
dla wymiernych w ∈ [a, b], to f = g.

Dowód . Niech x ∈ [a, b]. Niech wn ∈ [a, b] b¦dzie ci¡giem liczb wymiernych
zbie»nym do x. Wtedy

f(x) = lim
n→∞

f(wn) = lim
n→∞

g(wn) = g(x),

wi¦c f = g. tu

4.25. Fakt. Zªo»enie funkcji ci¡gªych jest funkcj¡ ci¡gª¡, tzn. je±li f : I → J ,
g : J → K oraz f jest ci¡gªa w punkcie x ∈ I a g w punkcie y = f(x), to funkcja
g ◦ f : I → K jest ci¡gªa w x.

Dowód . Dla dowolnego ci¡gu {xn} ⊆ I zbie»nego do x, z ci¡gªo±ci funkcji f
w punkcie x wynika, »e

f(xn)
n→∞−−−→ f(x) = y,

a st¡d wobec ci¡gªo±ci funkcji g w punkcie y

g(f(xn))
n→∞−−−→ g(y) = g(f(x)).

Pokazali±my wi¦c

∀ {xn} ⊆ I xn
n→∞−−−→ x ⇒ g ◦ f(xn)

n→∞−−−→ g ◦ f(x),

co zgodnie de�nicji¡ Heinego oznacza ci¡gªo±¢ funkcji g ◦ f w punkcie x. tu

4.26. Przykªad. Na mocy powy»szego faktu, funkcja

f : (0,∞) 3 x 7−→ xx = exp(x log x)
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jest ci¡gªa jako zªo»enie ci¡gªej funkcji wykªadniczej (Przykªad 4.20) z funkcj¡

x 7−→ x log x,

która jest iloczynem dwu funkcji ci¡gªych; jest wi¦c tak»e ci¡gªa. Ponadto, mo»emy
poªo»y¢ w zerze tak¡ warto±¢, aby przedªu»enie f1 funkcji f byªo nadal funkcj¡
ci¡gª¡. Mianowicie, z Przykªadu 4.19 i ci¡gªo±ci funkcji wykªadniczej wynika, »e

lim
x→0+

xx = lim
x→0+

ex log x = 1,

a st¡d

f1(x) =

{
xx, x > 0,

1, x = 0,

jest ci¡gªa na [0,∞).

4.27. Przykªad. Funkcje trygonometryczne s¡ ci¡gªe na swoich dziedzinach. Oczy-
wi±cie wystarczy sprawdzi¢ ci¡gªo±¢ funkcji sinus i cosinus. Ustalmy zatem dowolnie
punkt x0 ∈ R i we¹my dowolny ci¡g {xn} zbie»ny do niego. Wtedy

hn = xn − x0
n→∞−−−→ 0,

sk¡d (na mocy Faktu 4.11 i Przykªadu 4.1)

sin xn = sin(hn + x0)

= sin hn · cos x0 + cos hn · sin x0
n→∞−−−→ sin x0

i analogicznie

cos xn = cos(hn + x0)

= cos hn · cos x0 − sin hn · sin x0
n→∞−−−→ cos x0.

Ciekawym przykªadem funkcji, która ma wiele punktów ci¡gªo±ci, jak i nieci¡-
gªo±ci, jest funkcja Riemanna.

4.28. Przykªad. Niech f b¦dzie funkcj¡ okre±lon¡ na caªej prostej wzorem

f(x) =

{
0 gdy x /∈ Q,
1
q

gdy x = p
q
, gdzie (p, q) = 1.

Poka»emy, »e f jest ci¡gªa dokªadnie w punktach niewymiernych. Istotnie, je±li
xn → x /∈ Q, to warto±ci f(xn) s¡ równe 0, gdy xn s¡ niewymierne, i równe miano-
wnikom xn, gdy xn s¡ wymierne. Poniewa» warto±¢ graniczna x jest niewymierna,
mianowniki te d¡»¡ do niesko«czono±ci, co pokazuje, »e

lim
n→∞

f(xn) = 0 = f(x).

Je±li natomiast x ∈ Q, to f(x) 6= 0, i istnieje ci¡g liczb niewymiernych, np.
xn = x + e

n
zbie»ny do x. Mamy wi¦c

lim
n→∞

f(xn) = 0 6= f(x).
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Pami¦tamy, »e kresy górny i dolny zostaªy zde�niowane dla podzbiorów E ⊂ R
ograniczonych odpowiednio z góry i z doªu. Wygodnie b¦dzie rozszerzy¢ zwi¡zan¡
z tym notacj¦, tak aby obj¡¢ ni¡ tak»e zbiory nieograniczone. W zwi¡zku z tym
przyjmiemy nast¦puj¡c¡ de�nicj¦:
Je±li R ⊇ E 6= ∅ jest nieograniczony z góry, to b¦dziemy mówi¢, »e E ma kres
górny niewªa±ciwy i pisa¢ sup E = ∞. Analogicznie, je±li R ⊇ E 6= ∅ jest
nieograniczony z doªu, to b¦dziemy mówi¢, »e E ma kres dolny niewªa±ciwy i
pisa¢ inf E = −∞. De�nicja ta pozwoli nam na przykªad na pisanie sup E < ∞,
co jest oczywi±cie równowa»ne powiedzeniu, »e zbiór E jest ograniczony od góry.
Podobnie fakt, »e zbiór E jest ograniczony od doªu mo»emy wyrazi¢ krótko, pisz¡c
inf E > −∞.
Mówimy, »e funkcja f : ∅ 6= D → R jest ograniczona z góry (odpowiednio
z doªu), je±li jej zbiór warto±ci jest ograniczony z góry (odp. z doªu), tzn.

sup f(D) = sup
x∈D

f(x) < ∞
(
odp. inf f(D) = inf

x∈D
f(x) > −∞

)
.

4.29. Twierdzenie. Funkcja ci¡gªa na odcinku domkni¦tym jest ograniczona i os-
i¡ga swoje kresy.

Dowód . Przypu±¢my, »e
f : [a, b] −→ R

jest ci¡gªa i nieograniczona. Wtedy istnieje ci¡g {xn} ⊆ [a, b] taki, »e

(4.30) |f(xn)| n→∞−−−→∞.

Poniewa» {xn} ograniczony, wi¦c na mocy twierdzenia Bolzano-Weierstrassa ist-
nieje podci¡g {xnk

}k∈N zbie»ny do pewnego x0. Skoro

∀ k ∈ N a ≤ xnk
≤ b,

to równie» a ≤ x0 ≤ b, tzn. x0 nale»y do dziedziny f , i wobec ci¡gªo±ci f

f(xnk
)

k→∞−−−→ f(x0),

co przeczy (4.30).
Pozostaje dowie±¢, »e f przyjmuje warto±¢ najwi¦ksz¡ i najmniejsz¡. Niech

α = inf
x∈[a,b]

f(x).

Z de�nicji kresu wynika, »e

∃{xn} ⊆ [a, b] f(xn)
n→∞−−−→ α.

Podobnie jak poprzednio wybieramy podci¡g {xnk
} zbie»ny do pewnego x0 ∈ [a, b].

Wtedy

f(xnk
)

k→∞−−−→ α,

a z ci¡gªo±ci funkcji f w punkcie x0

f(xnk
)

k→∞−−−→ f(x0),
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sk¡d α = f(x0). Analogicznie pokazujemy, »e istnieje x1 ∈ [a, b] takie, »e

f(x1) = sup
x∈[a,b]

f(x),

co ko«czy dowód. tu

4.31. Twierdzenie (Darboux). Je±li f : [a, b] → R jest ci¡gªa oraz

f(a) < y < f(b),

to istnieje c ∈ (a, b), takie »e f(c) = y.

Dowód . Niech
E = {x ∈ [a, b] : f(x) < y}.

Skoro a ∈ E i b /∈ E, wi¦c ∅ 6= E ⊂ [a, b]. Je±li przyjmiemy, »e

c = sup E,

to a < c < b oraz
∃ {xn} ⊆ E xn

n→∞−−−→ c.

Z ci¡gªo±ci funkcji f

f(xn)
n→∞−−−→ f(c),

a poniewa»
∀n ∈ N f(xn) < y,

wi¦c

(4.32) f(c) ≤ y.

Wybierzmy z odcinka [a, b] ci¡g zbie»ny do c od góry, np.

zn = c + (b− c)/n
n→∞−−−→ c,

a wtedy(
∀n ∈ N zn /∈ E

)
⇒

(
∀n ∈ N f(zn) ≥ y

)
⇒ f(c) ≥ y

i wobec (4.32)
f(c) = y,

co pokazuje tez¦. tu

Oczywi±cie twierdzenie Darboux pozostaje prawdziwe, gdy f(b) < y < f(a).
Niech bowiem g = −f i z = −y. Wtedy g(a) < z < g(b) i istnieje a < c < b, takie
»e g(c) = z, czyli f(c) = y.

4.33. Wniosek. Obrazem odcinka domkni¦tego przez funkcj¦ ci¡gª¡ jest odcinek
domkni¦ty. Dokªadniej, je±li

f : [a, b] −→ R

jest ci¡gªa, to
f
(
[a, b]

)
=
[

min
x∈[a,b]

f(x) , max
x∈[a,b]

f(x)
]
.
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Dowód . Na mocy Twierdzenia 4.29 funkcja f jest ograniczona i osi¡ga swoje
kresy, czyli

inf
x∈[a,b]

f(x) = min
x∈[a,b]

f(x) = f(x1)

oraz
sup

x∈[a,b]

f(x) = max
x∈[a,b]

f(x) = f(x2)

dla pewnych x1, x2 ∈ [a, b]. Oczywi±cie

(4.34) f
(
[a, b]

)
⊆
[
f(x1), f(x2)

]
.

Na mocy twierdzenia Darboux

∀ y ∈
(
f(x1) , f(x2)

)
∃ c ∈ (x1, x2) f(c) = y,

tzn. [
f(x1) , f(x2)

]
⊆ f

(
[a, b]

)
,

co wobec (4.34) daje tez¦. tu

4.35. Wniosek. Je±li
f : (a, b) −→ R

jest ci¡gªa i ró»nowarto±ciowa, to jest ±ci±le monotoniczna.

Dowód . Zaªó»my nie wprost, »e f nie jest monotoniczna, tzn. istniej¡

(4.36) a < x1 < x2 < x3 < b,

takie »e
f(x1) < f(x2) i f(x2) > f(x3),

albo
f(x1) > f(x2) i f(x2) < f(x3).

Bez zmniejszania ogólno±ci zaªó»my, »e zachodzi pierwsza z koniunkcji. Wtedy

∃ y y ∈
(
f(x1), f(x2)

)
∩
(
f(x3), f(x2)

)
,

sk¡d, na mocy twierdzenia Darboux,

∃ c1 ∈ (x1, x2) f(c1) = y

oraz
∃ c2 ∈ (x2, x3) f(c2) = y,

co wobec (4.36) oznacza, »e c1 6= c2 i tym smym jest sprzeczne z zaªo»eniem
ró»nowarto±ciowo±ci funkcji f . tu

I jeszcze jeden wniosek z twierdzenia Darboux.

4.37. Wniosek (o punkcie staªym). Niech f : [a, b] → [a, b] b¦dzie ci¡gªa. Istnieje
c ∈ [a, b], takie »e f(c) = c.
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Dowód . Rozwa»my funkcj¦ g : [a, b] → R zadan¡ wzorem g(x) = x − f(x).
Chcemy pokaza¢, »e g ma miejsce zerowe. Oczywi±cie, g(a) ≤ 0g(b), wi¦c albo
który± z punktów a, b jest miejscem zerowym, albo

g(a) < 0 < g(b)

i wtedy na mocy wªasno±ci Darboux istnieje c ∈ (a, b), takie »e g(c) = 0, bo przecie»
g jest funkcj¡ ci¡gª¡. Ale skoro tak, to f(c) = c, a o to nam przecie» chodziªo. tu

4.38. Twierdzenie. Je±li
f : [a, b] −→ [c, d]

jest ci¡gª¡ bijekcj¡, to
f−1 : [c, d] −→ [a, b]

jest równie» ci¡gªa.

Dowód . We¹my dowolny ci¡g {yn} ⊆ [c, d] zbie»ny do pewnego y ∈ [c, d]. Skoro

{f−1(yn)} ⊆ [ a, b ],

to na mocy twierdzenia Bolzano-Weierstrassa mo»emy wybra¢ podci¡g zbie»ny

f−1(ynk
)

k→∞−−−→ x.

Z ci¡gªo±ci funkcji f

f
(
f−1(ynk

)
) k→∞−−−→ f(x),

a poniewa»

f
(
f−1(ynk

)
)

= ynk

k→∞−−−→ y,

wi¦c y = f(x), czyli x = f−1(y).
Skoro, jak pokazali±my, dowolny podci¡g zbie»ny ci¡gu ograniczonego {f−1(yn)}

jest zbie»ny do tej samej liczby f−1(y), to na mocy Twierdzenia 2.50

f−1(yn)
n→∞−−−→ f−1(y),

co oznacza, »e funkcja f−1 jest ci¡gªa. tu

Podali±my ju» w obu wersjach, Heinego i Cauchy'ego, precyzyjne de�nicje granicy
liczbowej w punkcie oraz granic jednostronnych liczbowych w punkcie. W podobny
sposób formuªuje si¦ de�nicj¦ granicy liczbowej w +∞ i w −∞. I tak, dla funkcji
f o dziedzinie D ⊇ (−∞, a), gdzie a ∈ R, mamy

lim
x→−∞

f(x) = α

⇐⇒ ∀{xn} ⊆ D
(
xn

n→∞−−−→ −∞ ⇒ f(xn)
n→∞−−−→ α

)
⇐⇒ ∀ ε > 0 ∃K < a ∀x < K |f(x)− α| < ε.

Obok granic liczbowych (czyli wªa±ciwych) mamy jeszcze odpowiadaj¡ce im granice
niewªa±ciwe. Dobrze by byªo, gdyby Czytelnik spróbowaª sam sformuªowa¢ odpo-
wiednie de�nicje. My ograniczymy si¦ do poni»szych przykªadów:
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Granica niewªa±ciwa w punkcie sko«czonym:

lim
x→x0

f(x) = −∞

⇐⇒ ∀{xn}
(
xn

n→∞−−−→ x0 ⇒ f(xn)
n→∞−−−→ −∞

)
⇐⇒ ∀K < 0 ∃ δ > 0

(
|x− x0| < δ ⇒ f(x) < K

)
.

Granica lewostronna niewªa±ciwa w punkcie sko«czonym:

lim
x→x0−

f(x) = ∞

⇐⇒ ∀{xn} ⊆ (a, x0)
(
xn

n→∞−−−→ x0 ⇒ f(xn)
n→∞−−−→∞

)
⇐⇒ ∀M > 0 ∃x1 < x0

(
x1 < x < x0 ⇒ f(x) > M

)
.

Granica niewªa±ciwa w niesko«czono±ci:

lim
x→∞

f(x) = −∞

⇐⇒ ∀{xn}
(
xn

n→∞−−−→∞ ⇒ f(xn)
n→∞−−−→ −∞

)
⇐⇒ ∀K < 0 ∃M > 0 ∀x > M f(x) < K.

Na zako«czenie tego rozdziaªu omówimy jeszcze funkcje addytywne, podaddyty-
wne i lipschitzowskie. Przypomnijmy, »e funkcja f : D → R speªniaj¡ca warunek

f(x + y) = f(x) + f(y), x, y, x + y ∈ D,

nazywa si¦ addytywna.

4.39. Twierdzenie. Je»eli f : R → R jest funkcj¡ ci¡gª¡ i addytywn¡, to istnieje
staªa c ∈ R, taka »e

f(x) = cx, x ∈ R.

Dowód . Rozumuj¡c indukcyjnie, ªatwo pokaza¢, »e dla ka»dego x ∈ R i ka»dego
n ∈ N jest f(nx) = nf(x). Z addytywno±ci wynika te», »e f(0) = 0. Z tych dwóch
warunków mamy f(nx) = nf(x) dla x ∈ R, n ∈ Z, wi¦c, podstawiaj¡c x = 1

n
,

otrzymujemy

f
(m

n

)
= mf

( 1

n

)
,

a w szczególno±ci dla m = n

f
( 1

n

)
=

1

n
f(1),

sk¡d nast¦pnie

f
(m

n

)
= mf

( 1

n

)
=

m

n
f(1).

Kªad¡c c = f(1), mamy
f(x) = cx, x ∈ Q.

Aby zako«czy¢ dowód, wystarczy skorzysta¢ z Lematu 4.24. tu
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Funkcja f : D → R speªniaj¡ca warunek

f(x + y) ≤ f(x) + f(y), x, y, x + y ∈ D,

nazywa si¦ podaddytywna.

4.40. Przykªad. Niech f(x) = |x|α, gdzie 0 < α ≤ 1, dla x ∈ R. Ta funkcja jest
podaddytywna, co wynika z nierówno±ci (3.7). Rzeczywi±cie,

f(x + y) = |x + y|α ≤ (|x|+ |y|)α

≤ |x|α + |y|α = f(x) + f(y)

dla x, y ∈ R.

4.41. Uwa g a. Je±li f : R → [0,∞) jest parzyst¡ funkcj¡ podaddytywn¡, to

|f(x)− f(y)| ≤ f(x− y), x, y ∈ R.

Faktycznie,
f(x) = f(y + (x− y)) ≤ f(y) + f(x− y),

wi¦c
f(x)− f(y) ≤ f(x− y), f(y)− f(x) ≤ f(y − x),

dla x, y ∈ R, a st¡d ju» natychmiast wynika teza.

Mówimy, »e funkcja f : I → R speªnia warunek Lipschitza ze staª¡ C > 0,
je±li

|f(x)− f(y)| ≤ C|x− y|, x, y ∈ I.

4.42. Przykªad. a) Tak¡ funkcj¡ jest np. sin : R → [−1, 1]. Rzeczywi±cie,

sin x− sin y = 2 sin
x− y

2
cos

x + y

2
,

wi¦c

| sin x− sin y| ≤ 2
∣∣∣ sin x− y

2

∣∣∣ ≤ |x− y|.
Staªa Lipschitza wynosi C = 1.

b) Niech teraz f : [1,∞) → R b¦dzie zadana wzorem f(x) = 1/x. Mamy

|f(x)− f(y)| =
∣∣∣1
x
− 1

y

∣∣∣ =
∣∣∣y − x

xy

∣∣∣ ≤ |x− y|,

wi¦c f jest tak»e lipschitzowska ze staª¡ C = 1.

c) Funkcja wykªadnicza (−∞, a] 3 x 7→ ex ∈ R speªnia warunek Lipschitza.
Istotnie, je±li x ≥ y,

ex − ey = ex(1− ey−x) ≤ ex(x− y) ≤ ea(x− y),

gdy» ez ≥ 1 + z dla z = y − x ∈ R. Wobec tego

|ex − ey| ≤ ea|x− y|, x, y ≤ a.
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Tutaj C = ea.

d) Mamy te» ∣∣∣|x| − |y|∣∣∣ ≤ |x− y|,
wi¦c i funkcja x 7→ |x| jest lipschitzowska ze staª¡ 1.

4.43. Twierdzenie. Funkcja f : I → R speªniaj¡ca warunek Lipschitza jest ci¡gªa
w ka»dym punkcie.

Dowód . Rzeczywi±cie, je±li I 3 xn → x0 ∈ I, to

|f(xn)− f(x0)| ≤ C|xn − x0| → 0,

wi¦c lim
x→x0

f(x) = f(x0). tu

Niech b¦dzie dana funkcja f : I → R. Warunek Lipschitza mo»na wyrazi¢ te»
tak: Istnieje staªa C > 0, taka »e dla wszelkich x, y ∈ I, x 6= y,∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ C.

Innymi sªowy, funkcja lipschitzowska, to funkcja o ograniczonych ilorazach ró»ni-
cowych, a optymaln¡ staª¡ Lipschitza jest

C = sup
x 6=y

∣∣∣f(x)− f(y)

x− y

∣∣∣.
4.44. Przykªad. Wró¢my do funkcji z Przykªadu 4.40. Jest ona lipschitzowska na
przedziale [1,∞). Rzeczywi±cie, je±li 0 < α ≤ 1 i 1 ≤ y ≤ x, to

xα − yα = xα−1(x− y) + y(xα−1 − yα−1),

gdzie drugi skªadnik sumy po prawej jest ju» niedodatni. Zatem

|xα − yα| ≤ |x− y|, x, y ≥ 1.

4.45. Przykªad. Rozwa»my jeszcze funkcj¦ f(x) = xα dla α > 1. Poka»emy, »e
jest ona lipschitzowska na przedziale [0, 1]. Niech 0 ≤ y < x ≤ 1. Je±li 2y ≤ x, to

xα − yα ≤ xα ≤ 2(x− y)α ≤ 2(x− y),

wi¦c pozostaje rozpatrzy¢ przypadek 2y ≥ x. Wtedy

xα − yα = xα
(
1− eα log y

x

)
≤ αxα log

y

x
≤ αxα x− y

y

≤ 2αα(x− y),

co dowodzi naszej tezy.
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Niech b¦dzie dany niesko«czony ci¡g liczbowy {ak}∞k=1. Ci¡g

An =
n∑

k=1

ak

nazywamy ci¡giem sum cz¦±ciowych ci¡gu {ak}. Je»eli ci¡g {An} jest zbie»ny,
mówimy, »e ci¡g {ak} jest sumowalny, a granic¦

A = lim
n→∞

An

nazywamy jego sum¡ i oznaczamy przez A =
∑∞

k=1 ak. Tak wi¦c z de�nicji
∞∑

k=1

ak = lim
n→∞

n∑
k=1

ak,

o ile ci¡g {ak} jest sumowalny.
Tradycyjna terminologia jest troch¦ inna. Za pomoc¡ symbolu

∞∑
k=1

ak = a1 + a2 + a3 + . . .

oznacza si¦ nie tylko sum¦ ci¡gu {ak}, gdy jest on sumowalny. U»ywa si¦ go
tak»e w przypadku ci¡gów niesumowalnych dla zaznaczenia samej intencji badania
sumowalno±ci ci¡gu. I tak zamiast ci¡g {ak} jest sumowalny b¡d¹ niesumowalny
mówi si¦ szereg

∑∞
k=1 ak jest zbie»ny b¡d¹ rozbie»ny, a zamiast suma niesko«czone-

go ci¡gu {ak} mówi si¦ suma szeregu
∑∞

k=1 ak. Podobnie sformuªowanie dany jest
szereg

∑∞
k=1 ak wyra»a to samo, co dany jest ci¡g {ak}∞k=1, a my b¦dziemy starali

si¦ rozstrzygn¡¢, czy jest on sumowalny i ewentualnie obliczy¢ jego sum¦.
Terminologia ta mo»e wydawa¢ si¦ nieprecyzyjna, ale jest tak wygodna i tak

powszechnie stosowana, »e warto przy niej pozosta¢. W chwilach pomieszania, które
cz¦sto zdarzaj¡ si¦ adeptom analizy, mo»na zawsze si¦gn¡¢ do ±cisªych de�nicji
podanych wy»ej.
Badanie zbie»no±ci szeregów jest w istocie badaniem zbie»no±ci ci¡gów specjalne-

go typu. Czytelnik przypomina sobie, »e tego typu ci¡gi wyst¦powaªy ju» wcze±niej
w naszych rozwa»aniach. Oto przykªady szeregów zbie»nych:

(1)
∑∞

k=0 qk = limn→∞
∑n

k=0 qk = 1
1−q

, o ile |q| < 1,

(2)
∑∞

k=1
1

k(k+1)
= limn→∞

∑n
k=1

1
k(k+1)

= limn→∞(1− 1
n+1

) = 1,

(3)
∑∞

k=0
xk

k!
= limn→∞

∑n
k=0

xk

k!
= ex dla x ∈ R,

(4)
∑∞

k=1
(−1)k+1

k
= limn→∞

∑n
k=1

(−1)k+1

k
= log 2,
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(5)
∑∞

k=1
1
k
− log(1 + 1

k
) = limn→∞

∑n
k=1

1
k
− log(1 + 1

k
) = γ.

Wiemy równie», »e nast¦puj¡ce szeregi s¡ rozbie»ne:

(1)
∑∞

k=1
1
k

= limn→∞
∑n

k=1
1
k
→∞,

(2)
∑∞

k=0 qk = limn→∞
∑∞

k=0 qk dla |q| ≥ 1,

(3)
∑∞

k=0(−1)k = limn→∞
∑n

k=0(−1)k,

Ten ostatni szereg jest rozbie»ny, bo jego sumy cz¦±ciowe An = 1+(−1)n

2
nie maj¡

granicy. Zwró¢my uwag¦, »e tradycyjna terminologia zmusiªa nas przed chwil¡ do
napisania symbolu granicy przed ci¡gami rozbie»nymi. Taka ju» jest jej uroda!

Wiemy, »e ci¡g zbie»ny jest ograniczony. Dla szeregu oznacza to:

5.1. Fakt. Ci¡g sum cz¦±ciowych szeregu zbie»nego jest ograniczony.

Zwró¢my uwag¦, »e szereg (3) z wy»ej wymienionych szeregów rozbie»nych ma
ograniczone sumy cz¦±ciowe.

5.2. Fakt. Szereg
∑∞

k=1 ak o wyrazach nieujemnych jest zbie»ny, wtedy i tylko wtedy
gdy ci¡g {An} jego sum cz¦±ciowych jest ograniczony.

Dowód . Rzeczywi±cie ak ≥ 0 pociaga An+1 ≥ An. Skoro ci¡g sum cz¦±ciowych
jest rosn¡cy, jego zbie»no±¢ jest równowa»na ograniczono±ci. tu

Je»eli szereg
∑∞

k=1 ak ma wyrazy nieujemne, to w my±l powy»szego faktu ci¡g
jego sum cz¦±ciowych jest zbie»ny lub rozbie»ny do niesko«czono±ci. Dlatego b¦-
dziemy pisa¢

∞∑
k=1

ak < ∞,

aby krótko wyrazi¢ zbie»no±¢ takiego szeregu, lub
∞∑

k=1

ak = ∞,

aby zaznaczy¢ jego rozbie»no±¢. Notacji tej nie wolno stosowa¢ do szeregów o
wyrazach niekoniecznie nieujemnych.

5.3. Fakt. Je±li szereg
∑∞

k=1 ak jest zbie»ny, to limk→∞ ak = 0.

Dowód . Mamy
an = An − An−1, n ≥ 2,

gdzie An oznacza n-t¡ sum¦ cz¦±ciow¡, sk¡d natychmiast wynika teza. tu
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Nie nale»y jednak s¡dzi¢, »e warunek ak → 0 jest wystarczaj¡cy dla zbie»no±ci
szeregu. �wiadczy o tym cho¢by szereg (1) z umieszczonej wy»ej listy szeregów
rozbie»nych.
Ostatni dowód nasuwa pewne wa»ne spostrze»enie. Powiedzieli±my wcze±niej, »e

szeregi to ci¡gi specjalnego typu. Nie jest to caªkiem ±cisªe, bo sugeruje jakoby
szeregi stanowiªy pewn¡ wªa±ciw¡ podklas¦ klasy wszystkich ci¡gów. Tymczasem
nietrudno zauwa»y¢, »e ka»dy ci¡g mo»na przedstawi¢ w postaci szeregu, kªad¡c

an+1 =
n∑

k=0

(ak+1 − ak) =
n∑

k=0

a′k,

gdzie a0 = 0. Krótko mówi¡c, ka»dy ci¡g {ak+1} jest ci¡giem sum cz¦±ciowych ci¡gu
ÿpochodnych" {a′k}. Lepiej wi¦c powiedzie¢, »e badanie szeregów to badanie ci¡gów
jako ci¡gów sum cz¦±ciowych. Ró»nica polega na tym, »e tu zaªo»enia formuªuje
si¦ w terminach ci¡gu {a′k}, a nie samego ci¡gu {ak}.

5.4. Fakt. Je»eli szereg A =
∑∞

k=1 ak jest zbie»ny, to zbie»ny jest te» ka»dy z sze-
regów

Rn =
∞∑

k=n

ak,

a ponadto

lim
n→∞

Rn = 0.

Dowód . Rzeczywi±cie, je±li

An =
n∑

k=1

ak,

to sumy cz¦±ciowe szeregu Rn s¡ równe

Rn(m) =
m∑

k=n

ak = Am − An−1,

wi¦c Rn(m) → A− An−1, gdy m →∞. Zatem

lim
n→∞

Rn = lim
n→∞

A− An−1 = 0,

co byªo do okazania. tu

5.5. Fakt. Szereg
∑∞

k=1 ak jest zbie»ny, wtedy i tylko wtedy gdy dla ka»dego ε > 0
isnieje N ∈ N, takie »e ∣∣∣ n∑

k=m+1

ak

∣∣∣ < ε

dla n > m ≥ N .
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Dowód . Jako »e
n∑

k=m+1

ak = An − Am,

gdzie An jest n-t¡ sum¡ cz¦±ciow¡ szeregu, rozpoznajemy warunek Cauchy'ego z
Twierdzenia 2.52, który jest równowa»ny zbie»no±ci ci¡gu {An}, a wi¦c zbie»no±ci
szeregu. tu

5.6. Wniosek. Je±li szereg
∑∞

k=1 |ak| jest zbie»ny, to tak»e szereg
∑∞

k=1 ak jest
zbie»ny, a ponadto ∣∣∣∣ ∞∑

k=1

ak

∣∣∣∣ ≤ ∞∑
k=1

|ak|.

Dowód . Zbie»no±¢ szeregu
∑∞

k=1 ak wynika z nierówno±ci trójk¡ta:∣∣∣∣ n∑
k=m+1

ak

∣∣∣∣ ≤ n∑
k=m+1

|ak|

oraz z Faktu 5.5. Je±li w ostatniej nierówno±ci przyjmiemy m = 0, otrzymamy
nierówno±¢

|An| ≤
n∑

k=1

|ak|,

a po przej±ciu z n do niesko«czono±ci drug¡ cz¦±¢ tezy. tu

Mówimy, »e szereg
∑∞

k=1 ak jest bezwzgl¦dnie (albo absolutnie) zbie»ny, je±li
zbie»ny jest szereg

∑∞
k=1 |ak|. Wy»ej pokazali±my, »e szereg bezwzgl¦dnie zbie»ny

jest zbie»ny. Zwró¢my uwag¦, »e szereg (4) z wy»ej umieszczonej listy szeregów
zbie»nych nie jest bezwzgl¦dnie zbie»ny. Taki szereg nazywamy warunkowo zbie-
»nym.

5.7. Uwa g a. Wiemy, »e zmiana sko«czonej ilo±ci wyrazów w ci¡gu nie ma wpªywu
ani na jego zbie»no±¢, ani na warto±¢ granicy, o ile ta istnieje. Troch¦ inaczej
wygl¡da sprawa z szeregami. Zmiana sko«czonej ilo±ci wyrazów w szeregu oznacza
dodanie pewnej staªej do wszystkich wyrazów ci¡gu sum cz¦±ciowych pocz¡wszy
od pewnego miejsca. Nie wpªywa zatem na zbie»no±¢ szeregu, ale mo»e wpªyn¡¢
na warto±¢ jego sumy, gdy jest on zbie»ny. W szczególno±ci zbie»no±¢ szeregu

∞∑
k=N

ak

dla jakiegokolwiek N ∈ N poci¡ga zbie»no±¢ caªego szeregu
∑∞

k=1 ak.

Zajmijmy si¦ teraz szeregami o wyrazach nieujemnych. Oto tak zwane kryterium
porównawcze zbie»no±ci szeregów.
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5.8. Fakt. Niech b¦d¡ dane dwa szeregi
∑∞

k=1 ak i
∑∞

k=1 bk o wyrazach nieujem-
nych, takich »e ak ≤ bk dla dostatecznie du»ych k. Wtedy zbie»no±¢ szeregu

∑∞
k=1 bk

poci¡ga zbie»no±¢ szeregu
∑∞

k=1 ak, natomiast rozbie»no±¢ szeregu
∑∞

k=1 ak poci¡ga
rozbie»no±¢ szeregu

∑∞
k=1 bk.

Dowód . Rzeczywi±cie, istnieje wtedy N ∈ N, takie »e dla n > N mamy
n∑

k=N

ak ≤
n∑

k=N

bk,

wi¦c ograniczono±¢ szeregu o wyrazach bk poci¡ga ograniczono±¢ szeregu o wyrazach
ak i odwrotnie { nieograniczono±¢ szeregu po lewej poci¡ga nieograniczono±¢ tego
po prawej. To na mocy Faktu 5.2 dowodzi naszej tezy. tu

5.9. Przykªad. Zauwa»my, »e nierówno±¢
1

k2
<

1

k(k − 1)
, k > 1,

wraz ze zbie»no±ci¡ szeregu
∑∞

k=2
1

k(k−1)
dowodzi na mocy kryterium porównaw-

czego, »e
∞∑

k=1

1

k2
< ∞.

Ponadto

lim
n→∞

∞∑
k=n

1

k2
= 0.

Mo»na jednak pokaza¢ wi¦cej. Mianowicie
∞∑

k=n

1

k2
≈ 1

n
,

a dokªadniej

lim
n→∞

n
∞∑

k=n

1

k2
= 1.

W tym celu wystarczy zauwa»y¢, »e dla ka»dego k ≥ 2

1

k(k + 1)
<

1

k2
<

1

(k − 1)k
.

Sumuj¡c wzgl¦dem 2 ≤ n ≤ k ≤ m, dostajemy

1

n
− 1

m + 1
<

m∑
k=n

1

k2
<

1

n− 1
− 1

m
,

sk¡d po przej±ciu granicznym wzgl¦dem m

1 < n

∞∑
k=n

1

k2
<

n

n− 1
,
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a st¡d ju» nasza teza na mocy twierdzenia o trzech ci¡gach.
∞∑

k=n

1

k2
≈ 1

n
.

Porównuj¡c wyrazy danego szerego z wyrazami szeregu geometrycznego, otrzy-
mujemy kryteria d'Alamberta i Cauchy'ego.

5.10. Twierdzenie. Niech b¦dzie dany szereg
∑∞

k=1 ak o wyrazach dodatnich. Je»eli

lim sup
k→∞

ak+1

ak

< 1,

to szereg jest zbie»ny. Je»eli natomiast

lim inf
k→∞

ak+1

ak

> 1,

to szereg jest rozbie»ny.

Dowód . Niech lim supk→∞
ak+1

ak
< 1. Oznacza to, »e istnieje liczba 0 < q < 1,

taka »e dla dostatecznie du»ych k ≥ N mamy ak+1

ak
≤ q, sk¡d

ak =
ak

ak−1

· ak−1

ak−2

. . .
aN+1

aN

· aN ≤ qk−NaN = CNqk,

gdzie CN = aN

qN . Zatem na mocy kryterium porównawczego szereg
∑∞

k=1 ak jest
zbie»ny.
Je±li za± lim infk→∞

ak+1

ak
> 1, to istnieje liczba q > 1, taka »e dla dostatecznie

du»ych k ≥ N mamy ak+1

ak
≥ q, sk¡d

ak =
ak

ak−1

· ak−1

ak−2

. . .
aN+1

aN

· aN ≥ qk−NaN = CNqk,

gdzie CN = aN

qN . Zatem na mocy kryterium porównawczego szereg
∑∞

k=1 ak jest
rozbie»ny. tu

5.11. Uwa g a. Kryteria d'Alamberta nie mówi¡ nic w sytuacji, gdy

lim sup
k→∞

ak+1

ak

≥ 1 lub lim inf
k→∞

ak+1

ak

≤ 1.

Tak si¦ dzieje w przypadku szeregów
∞∑

k=1

1

k
,

∞∑
k=1

1

k2
.

W obu przypadkach mamy

lim
k→∞

ak+1

ak

= 1,

a tymczasem pierwszy z tych szeregów jest rozbie»ny, a drugi zbie»ny.
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5.12. Przykªad. Rozwa»my szeregi
∞∑

k=0

ak =
∞∑

k=0

(
2k

k

)
5−k,

∞∑
k=0

bk =
∞∑

k=0

(
2k

k

)
3−k.

Mamy
ak+1

ak

=

(
2k+2
k+1

)
5−k−1(

2k
k

)
5−k

=
1

5
· (2k + 1)(2k + 2)

(k + 1)2

k→∞−−−→ 4

5

oraz
bk+1

bk

=

(
2k+2
k+1

)
3−k−1(

2k
k

)
3−k

=
1

3
· (2k + 1)(2k + 2)

(k + 1)2

k→∞−−−→ 4

3
,

wi¦c pierwszy szereg jest zbie»ny, a drugi rozbie»ny. Przykªad ten dobrze ilustruje
ten wygodny fakt, »e w praktycznych zastosowaniach wyra»enie ak+1

ak
cz¦sto ma

granic¦.

Przechodzimy do kryteriów Cauchy'ego.

5.13. Twierdzenie. Niech b¦dzie dany szereg
∑∞

k=1 ak o wyrazach nieujemnych.
Je»eli

lim sup
k→∞

k
√

ak < 1,

to szereg jest zbie»ny. Je»eli natomiast

lim sup
k→∞

k
√

ak > 1,

to szereg jest rozbie»ny.

Dowód . Niech lim supk→∞
k
√

ak < 1. Oznacza to, »e istnieje liczba 0 < q < 1,
taka »e dla dostatecznie du»ych k ≥ N jest k

√
ak < q, czyli ak < qk, wi¦c na mocy

kryterium porównawczego szereg
∑∞

k=1 ak jest zbie»ny.
Je±li za± lim supk→∞

k
√

ak > 1, to istnieje liczba q > 1, taka »e dla niesko«czenie
wielu k jest k

√
ak > q, czyli ak > qk, wi¦c ci¡g {ak} nie d¡»y do zera, a to na mocy

Faktu 5.3 oznacza, »e szereg
∑∞

k=1 ak jest rozbie»ny. tu

5.14. Uwa g a. Podobnie jak kryteria d'Alamberta tak»e kryteria Cauchy'ego nie
mówi¡ nic w sytuacji, gdy

lim sup
k→∞

k
√

ak = 1.

Mo»na na poparcie tej tezy przytoczy¢ te same przykªady.

5.15. Uwa g a. Mamy

lim inf
k→∞

ak+1

ak

≤ lim sup
k→∞

k
√

ak ≤ lim sup
k→∞

ak+1

ak

.
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Druga nierówno±¢ pochodzi z Faktu 2.59, a pierwszej dowodzi si¦ analogicznie.
Wynika st¡d, »e je±li kryteria Cauchy'ego nie s¡ w stanie rozstrzygn¡¢ kwestii
zbie»no±ci szeregu, to i kryteria d'Alamberta zawodz¡. Potocznie mówi si¦, »e
je±li szereg nie reaguje na kryteria Cauchy'ego, to nie reaguje tak»e na kryteria
d'Alamberta.

5.16. Przykªad. Niech b¦dzie dany ci¡g {ak} o wyrazach nieujemnych zbie»ny
do a. Wtedy szereg

∑∞
k=1 ak

k jest zbie»ny, je±li a < 1 i rozbie»ny, je±li a > 1. Niech
np.

ak =

(
(1 + ε)1/k + (1− ε)1/k

2

)k

,

gdzie 0 < ε < 1. Na mocy Przykªadu 4.7

lim
k→∞

ak =
√

1− ε2 < 1,

wi¦c, stosuj¡c kryterium Cauchy'ego, widzimy, »e

∞∑
k=1

(
(1 + ε)1/k + (1− ε)1/k

2

)k2

< ∞.

Rozpatrzmy jeszcze jeden przykªad.

5.17. Przykªad. Niech b¦dzie dany szereg o wyrazie ogólnym

ak =
3 + (−1)k

2k
.

Jak wida¢

a
1/k
k ≤

( 4

2k

)1/k

≤ 41/k

2
,

wi¦c lim supk→∞ a
1/k
k = 1/2. St¡d

∞∑
k=0

3 + (−1)k

2k
< ∞.

W tym wypadku jednak lepiej skorzysta¢ wprost z porównania ze zbie»nym szere-
giem geometrycznym:

ak ≤
4

2k
.

I jeszcze jedno kryterium badania zbie»no±ci szeregów o wyrazach dodatnich
(nieujemnych), zwane kryterium Cauchy'ego o zag¦szczaniu.

5.18. Fakt. Niech {ak} b¦dzie ci¡giem malej¡cym liczb nieujemnych. Wówczas
szereg

∑∞
k=1 ak jest zbie»ny, wtedy i tylko wtedy gdy szereg

∑∞
k=1 2ka2k jest zbie»ny.
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Dowód . Rzeczywi±cie,
2N−1∑
k=1

ak =
N−1∑
n=0

2n+1−1∑
k=2n

ak ≤
N−1∑
n=0

2na2n

oraz
2N−1∑
k=1

ak =
N−1∑
n=0

2n+1−1∑
k=2n

ak ≥
N−1∑
n=0

2na2n+1 =
1

2

N∑
n=1

2na2n ,

bo wyrazów ak dla 2n ≤ k < 2n+1 jest 2n i na mocy naszych zaªo»e« najmniejszym
jest a2n+1−1 ≥ a2n+1 , a najwi¦kszym a2n . Z udowodnionych nierówno±ci wynika
teza. tu

Co prawda wiemy ju», »e
∞∑

k=1

1

k2
< ∞,

a co za tym idzie
∞∑

k=1

1

kα
< ∞, α ≥ 2,

oraz
∞∑

k=1

1

k
= ∞,

i co za tym idzie
∞∑

k=1

1

kα
= ∞, α ≤ 1,

ale kryterium o zag¦szczaniu pozwala za jednym zamachem ÿzgª¦bi¢" wszystkie te
przypadki, ª¡cznie z tymi, których jeszcze brakuje.

5.19. Wniosek. Szereg
∑∞

k=1
1

kα jest zbie»ny, wtedy tylko wtedy gdy α > 1.

Dowód . Rzeczywi±cie, je±li ak = 1
kα , to

∞∑
k=1

2ka2k =
∞∑

k=1

2k

2αk
=

∞∑
k=1

qk,

a ostatni szereg, który jest szeregiem geometrycznym o ilorazie q = 21−α, jest
zbie»ny dokªadnie wtedy, gdy α > 1. tu

A oto interesuj¡ce uogólnienie Przykªadu 5.9.

5.20. Fakt. Dla ka»dego α > 0

lim
n→∞

nα

∞∑
k=n

1

k1+α
=

1

α
.
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Dowód . Rozwa»my ci¡g ak = 1
kα . Mamy

−a′k =
1

kα
− 1

(k + 1)α
=

1

kα

(
1− exp

(
− α log

k + 1

k

))
.

Stosuj¡c nierówno±¢ 1− e−|x| ≤ |x|, dostajemy

−a′k ≤
α

k1+α
.

Z drugiej strony

1

kα

(
1− exp

(
− α log

k + 1

k

))
=

α

kα
log
(
1 +

1

k

)
+

α

k1
r2

(
α log

(
1 +

1

k

))
,

gdzie |r2(x)| ≤ x2, wi¦c

−a′k ≥
α

(k + 1)1+α
− α2

k2+α
,

i ostatecznie

−a′k ≤
α

k1+α
≤
( α2

(k − 1)2+α
− a′k−1

)
.

Sumuj¡c otrzymujemy

1

nα
≤

∞∑
k=n

α

k1+α
≤ 1

(n− 1)α
+ α2

∞∑
k=n−1

1

k2+α
.

Jako »e
∞∑

k=n−1

1

k2+α
≤ 1

(n− 1)α

∞∑
k=n−1

1

k2
≤ 1

(n− 1)α(n− 2)
,

widzimy, »e

1 ≤ α · nα

∞∑
k=n

1

k1+α
≤ nα

(n− 1)α
+

α2nα

(n− 1)α(n− 2)
.

Drugi skªadnik po prawej d¡»y do zera, wi¦c nasza teza jest konsekwencj¡ twier-
dzenia o trzech ci¡gach. tu

Nawiasem mówi¡c, przez nieznaczn¡ mody�kacj¦ przedstawionego przed chwil¡
rozumowania mo»na otrzyma¢ inny dowód Wniosku 5.19. Szczegóªy pozostawiamy
dociekliwemu Czytelnikowi do samodzielnego uzupeªnienia.
Tyle na razie na temat szeregów o wyrazach nieujemnych. Przechodzimy do

szeregów o wyrazach dowolnych. Je»eli taki szereg jest zbie»ny bezwzgl¦dnie, to w
zasadzie jego badanie sprowadza si¦ do badania szeregu warto±ci bezwzgl¦dnych,
który ma wyrazy nieujemne. Je±li jednak jest zbie»ny tylko warunkowo, sprawa jest
znacznie delikatniejsza.
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5.21. Twierdzenie (Leibniz). Je±li ci¡g {ak} maleje monotonicznie do zera, to
szereg

∞∑
k=0

(−1)kak

jest zbie»ny.

Dowód . Widzimy, »e parzyste sumy cz¦±ciowe

A2n = (a0 − a1) + (a2 − a3) + · · ·+ (a2n−2 − a2n−1) + a2n ≥ 0

s¡ ograniczone z doªu i tworz¡ ci¡g malej¡cy, bo

A2n+2 − A2n = a2n+2 − a2n+1 ≤ 0,

natomiast sumy nieparzyste

A2n+1 = a0 + (a2 − a1) + (a4 − a3) + . . . (a2n − a2n+1) ≤ a0

s¡ ograniczone z góry i tworz¡ ci¡g rosn¡cy, bo

A2n+3 − A2n+1 = a2n+2 − a2n+3 ≥ 0.

Tak wi¦c oba podci¡gi {A2n} i {A2n+1} s¡ zbie»ne i wobec

A2n − A2n+1 = a2n+1 → 0

maj¡ wspóln¡ granic¦. St¡d ci¡g sum cz¦±ciowych jest zbie»ny. tu

Oprócz znanego nam ju» dobrze szeregu anharmonicznego
∞∑

k=1

(−1)k+1

k

dobrymi przykªadami na twierdzenie Leibniza s¡ szeregi
∞∑

k=1

(−1)k+1 log
(
1 +

1

k

)
,

∞∑
k=1

(−1)k+1
(
e−

(
1 +

1

k

)k)
.

Rzeczywi±cie ci¡gi

ak =
1

k
, bk = log

(
1 +

1

k

)
, ck = e−

(
1 +

1

k

)k

s¡ monotonicznie zbie»ne do zera.

5.22. Lemat. Niech b¦d¡ dane dwa ci¡gi niesko«czone {ak} i {bk}. Dla dowolnych
m ≤ n naturalnych zachodzi nast¦puj¡ca to»samo±¢ Abela:

n∑
k=m

akb
′
k = (an+1bn+1 − ambm)−

n∑
k=m

a′kbk+1,

gdzie, przypomnijmy, a′k = ak+1 − ak.
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Dowód . Wystarczy zauwa»y¢, »e
n∑

k=m

(akbk)
′ = an+1bn+1 − ambm,

a ponadto
(akbk)

′ = a′kbk+1 + akb
′
k,

co daje tez¦. tu

Za pomoc¡ to»samo±ci Abela udowodnimy bardzo wa»n¡ nierówno±¢ Abela, któ-
r¡ b¦dziemy nast¦pnie wielokrotnie wykorzystywa¢ przy badaniu rozmaitych sze-
regów.

5.23. Twierdzenie. Zaªó»my, »e ci¡g liczb nieujemnych {ak} jest monotoniczny,
natomiast ci¡g {bk} ma ograniczone sumy cz¦±ciowe

Bn =
n∑

k=1

bk,

co oznacza, »e istnieje β ≥ 0, taka »e |Bn| ≤ β dla ka»dego n. Wtedy∣∣∣ n∑
k=m

akbk

∣∣∣ ≤ 2β max{am, an+1}.

Dowód . Na mocy to»samo±ci Abela
n∑

k=m

akbk =
n∑

k=m

akB
′
k−1

= (an+1Bn − amBm−1)−
n∑

k=m

a′kBk,

wi¦c ∣∣∣ n∑
k=m

akbk

∣∣∣ ≤ β(an+1 + am +
n∑

k=m

|a′k|)

= β(an+1 + am + |an+1 − am|),

bo ci¡g {ak} jest monotoniczny. Rozpatruj¡c osobno przypadki an+1 ≤ am, gdy
ci¡g jest malej¡cy, i am ≤ an+1, gdy ci¡g jest rosn¡cy, dostajemy tez¦. tu

Nast¦puj¡ce kryterium Abela mo»na uwa»a¢ za uogólnienie podanego wy»ej kry-
terium Leibniza.

5.24. Twierdzenie. Je»eli {ak} jest ci¡giem malej¡cym do zera, a ci¡g sum cz¦±-
ciowych ci¡gu {bk} jest ograniczony, to szereg

∑∞
k=1 akbk jest zbie»ny.
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Dowód . Na mocy nierówno±ci Abela∣∣∣ n∑
k=m

akbk

∣∣∣ ≤ 2βam,

gdzie

β = sup
n∈N

∣∣ n∑
k=1

bk

∣∣∣.
Je±li m jest dostatecznie du»e, sumy po±rednie s¡ maªe, bo an → 0. To za± na mocy
Faktu 5.5 oznacza, »e szereg

∑∞
k=1 akbk jest zbie»ny. tu

Warto zatrzyma¢ si¦ na chwil¦, aby lepiej zrozumie¢ kryterium Abela. Przykªad,
który chcemy teraz zaprezentowa¢, wymaga pewnych przygotowa«. Zacznijmy od
nast¦puj¡cego lematu.

5.25. Lemat. Ci¡g bn = sin n nie jest zbie»ny do zera.

Dowód . Poka»emy, »e jest rzecz¡ niemo»liw¡, aby prawie wszystkie wyrazy
naszego ci¡gu le»aªy w przedziale (−1/2, 1/2). Przypu±¢my nie wprost, »e

| sin n| ≤ 1/2, n ≥ N.

Wtedy dla takich n

| cos n| =
√

1− sin2 n >

√
3

2
,

wi¦c

| sin n| =
∣∣∣ sin 2n

2 cos n

∣∣∣ < 1

2
√

3
.

Powtarzaj¡c to rozumowanie, pokazujemy, »e

| sin n| < 1

2(
√

3)p

dla ka»dego p ∈ N, co poci¡ga sin n = 0 dla n ≥ N . To jednak jest absurdem, bo
π jest liczb¡ niewymiern¡. tu

Z lematu wynika, »e szereg
∑∞

k=1 sin k jest rozbie»ny. Okazuje si¦ jednak, »e jego
sumy cz¦±ciowe s¡ ograniczone.

5.26. Fakt. Dla ka»dego x nie b¦d¡cego wielokrotno±ci¡ π

n∑
k=1

sin kx =
sin n

2
x · sin n+1

2
x

sin x
2

.
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Dowód . Gdy n = 1 nasza to»samo±¢ jest oczywista. Zaªó»my, »e jest ona
prawdziwa dla pewnego n ∈ N. Wtedy

n+1∑
k=1

sin kx =
n∑

k=1

sin kx + sin(n + 1)x =
sin n

2
x · sin n+1

2
x

sin x
2

+ sin(n + 1)x,

pozostaje wi¦c dowie±¢ równo±ci

sin n
2
x · sin n+1

2
x

sin x
2

+ sin(n + 1)x =
sin n+1

2
x · sin n+2

2
x

sin x
2

,

co jest prostym ¢wiczeniem z trygonometrii. tu

5.27. Przykªad. Niech {ak} b¦dzie ci¡giem malej¡cym do zera i niech bk = sin k.
Z Faktu 5.26 wynika, »e dla ka»dego n∣∣∣ n∑

k=1

bk

∣∣ ≤ ∣∣∣sin n
2
· sin n+1

2

sin 1
2

∣∣∣ ≤ 1

| sin 1
2
|
,

wi¦c sumy cz¦±ciowe ci¡gu {bk} s¡ ograniczone. Na mocy twierdzenia Abela szereg
∞∑

k=1

ak sin k

jest wi¦c zbie»ny.

Do±¢ podobnym do kryterium Abela jest kryterium Dirichleta. O ile jednak to
pierwsze kojarzy si¦ z warunkiem Leibniza, na to drugie dobrze jest spojrze¢ w
kontek±cie nast¦puj¡cego prostego przykªadu.
Je±li szereg

∑∞
k=1 bk jest zbie»ny bezwzgl¦dnie, a ci¡g {ak} jest ograniczony, to

∞∑
k=1

|akbk| < ∞,

co nietrudno wywnioskowa¢ z kryterium porównawczego. Innymi sªowy, wyrazy sze-
regu bezwzgl¦dnie zbie»nego mo»na pomno»y¢ przez wyrazy ci¡gu ograniczonego,
a otrzymany szereg b¦dzie nadal zbie»ny bezwzgl¦dnie. Tak oczywi±cie nie jest dla
szeregów warunkowo zbie»nych. Aby si¦ o tym przekona¢, wystarczy wyrazy szeregu
anharmonicznego pomno»y¢ przez ograniczony ci¡g (−1)k+1. Tym bardziej godne
uwagi jest nast¦puj¡ce twierdzenie Dirichleta, które mówi, »e mo»na to zrobi¢, je±li
ci¡g {ak} jest monotoniczny.

5.28. Twierdzenie. Niech
∑

k=1 bk b¦dzie szeregiem zbie»nym, a {ak} ogranic-
zonym ci¡giem monotonicznym. Wtedy szereg

∑∞
k=1 akbk jest zbie»ny.

Dowód . Niech

βm = sup
p≥m

∣∣∣ p∑
k=m

bk

∣∣∣.
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Poniewa» szereg ten jest zbie»ny, z Faktu 5.4 wynika, »e βm → 0, gdy m → ∞.
Niech ponadto |ak| ≤ α. Z nierówno±ci Abela zastosowanej do ci¡gów {ak}∞k=m i
{bk}∞k=m wynika, »e ∣∣∣ n∑

k=m

akbk

∣∣∣ ≤ 2αβm,

co oznacza, »e dla du»ych m sumy po±rednie szeregu
∑∞

k=1 akbk s¡ maªe, a wi¦c
jest on zbie»ny. tu

5.29. Przykªad. Je±li ci¡g {ak} maleje do zera, a ci¡g {bk} jest rosn¡cy i ogranic-
zony, to szereg

∞∑
k=1

(−1)k+1akbk

jest zbie»ny. Istotnie, szereg
∑∞

k=1(−1)k+1ak jest zbie»ny na mocy twierdzenia Lei-
bniza, wi¦c wolno go pomno»y¢ przez wyrazy ci¡gu rosn¡cego i ograniczonego bez
utraty zbie»no±ci.

Na tym ko«czymy wst¦pne omówienie szeregów zbie»nych warunkowo. Do ko«ca
rozdziaªu pozostaj¡ nam jeszcze iloczyny Cauchy'ego i zagadnienie permutacji
wyrazów w szeregu zbie»nym.
Niech b¦d¡ dane dwa ci¡gi {ak}∞k=0 i {bk}∞k=0. Iloczynem Cauchy'ego takich

ci¡gów nazywamy ci¡g o wyrazach ck = ak ? bk zde�niowany nast¦puj¡co:

cn =
n∑

k=0

akbn−k.

Zauwa»my od razu, »e iloczyn Cauchy'ego jest przemienny, tzn.

ak ? bk = bk ? ak

i rozdzielny wzgl¦dem dodawania ci¡gów:

ak ? (bk + dk) = ak ? bk + ak ? dk,

co si¦ ªatwo i przyjemnie sprawdza. Mamy te»

(5.30) |an ? bn| ≤
n∑

k=0

|an−kbk| ≤ max
0≤k≤n

|ak| ·
n∑

k=0

|bk|.

5.31. Lemat. Je±li ci¡g Ak → A i
∑∞

k=0 |bk| = β < ∞, to

lim
n→∞

An ? bn = A
∞∑

k=0

bk.

Dowód . Niech

Bn =
n∑

k=0

bk, B =
∞∑

k=0

bk.
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Ci¡g {An} jako zbie»ny jest ograniczony, wi¦c niech |An| ≤ α. Niech b¦dzie ε > 0.
Istnieje N ∈ N, takie »e

|An − AN | < ε,

∞∑
k=N

|bk| < ε

dla n ≥ N . Przy tych oznaczeniach mamy

An ? bn − AnBn =
n∑

k=0

Akbn−k −
n∑

k=0

Anbn−k

=
N∑

k=0

(Ak − An)bn−k +
n∑

k=N+1

(Ak − An)bn−k,

wi¦c dla du»ych N i n ≥ 2N na mocy (5.30)

|An ? bn − AnBn| ≤
∣∣∣ N∑

k=0

(Ak − An)bn−k

∣∣∣+ ∣∣∣ n∑
k=N+1

(Ak − An)bn−k

∣∣∣
≤ max

0≤k≤N
|Ak − An|

n∑
k=N

|bk|+ max
N<k≤n

|Ak − An|
n∑

k=0

|bk|

≤ 2αε + βε.

Zatem
lim

n→∞
An ? bn = lim

n→∞
AnBn = AB,

tak jak chcieli±my. tu

5.32. Twierdzenie (o iloczynach Cauchy'ego). Je±li szereg
∑∞

k=0 ak jest zbie»ny,
a szereg

∑∞
k=0 bk jest zbie»ny bezwzgl¦dnie, to szereg

∑∞
k=0 ak ? bk jest te» zbie»ny i

zachodzi równo±¢
∞∑

k=0

ak ? bk =
∞∑

k=0

ak ·
∞∑

k=0

bk.

Dowód . Niech cn = an ? bn i niech An oznaczaj¡ sumy cz¦±ciowe pierwszego
szeregu, A za± i B sumy dwóch pierwszych. Jak ªatwo si¦ przekona¢

Cn = An ? bn,

wi¦c na mocy Lematu 5.31 ci¡g {Cn} ma granic¦ równ¡ AB, co jest nasz¡ tez¡. tu

Podamy najpierw przykªad pozytywny, a po nim negatywny.

5.33. Przykªad. Wiemy, »e szereg
∞∑

k=0

ak =
∞∑

k=0

qk =
1

1− q
, |q| < 1,
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jest bezwzgl¦dnie zbie»ny. Mamy

an ? an =
n∑

k=0

qkqn−k = (n + 1)qn,

wi¦c na mocy Twierdzenia 5.32
∞∑

n=0

(n + 1)qn =
1

(1− q)2
,

a st¡d
∞∑

n=1

nqn =
q

(1− q)2
.

5.34. Przykªad. Niech teraz ak = (−1)k
√

k+1
. Szereg

∑∞
k=0 ak jest zbie»ny warunkowo.

Mamy

an ? an = (−1)n

n∑
k=0

1√
(k + 1)(n− k + 1)

=
n+1∑
k=1

1√
k(n + 1− k)

,

wi¦c

|an ? an| ≥
n+1∑
k=1

√
2

n + 1
≥
√

2,

bo

k(n + 1− k) ≤ (n + 1)2

2
, 1 ≤ k ≤ n.

Zatem szereg iloczynów Cauchy'ego jest rozbie»ny, gdy» jego wyraz ogólny nie
d¡»y do zera. Widzimy, »e zaªo»enie o absolutnej zbie»no±ci przynajmniej jednego
z szeregów w Twierdzeniu 5.32 jest istotne.

Wiemy, »e w szeregu mo»na bezkarnie przestawi¢ sko«czon¡ liczb¦ wyrazów,
nie trac¡c zbie»no±ci, ani nie zmieniaj¡c jego sumy. Czy wolno jednak dokona¢
niesko«czonej permutacji wyrazów? Tak, je±li szereg jest absolutnie zbie»ny.

5.35. Twierdzenie. Niech
∑∞

k=1 |ak| < ∞. Wówczas dla ka»dej permutacji

σ : N → N

szereg
∑∞

k=1 aσ(k) jest równie» zbie»ny i
∞∑

k=1

aσ(k) =
∞∑

k=1

ak < ∞.

Dowód . Niech

An =
n∑

k=1

ak, Sn =
n∑

k=1

aσ(k)
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i niech
∞∑

k=1

ak = A = lim
n→∞

An.

Zauwa»my najpierw, »e dla ka»dego n istnieje minimalne Mn, takie »e

{1, 2, . . . , n} ⊂ σ
(
{1, 2, . . . Mn}

)
,

bo permutacja σ jest surjekcj¡.
Dla ε > 0 niech N b¦dzie takie, by

|A− AN | ≤
∞∑

k=N+1

|ak| < ε.

Wtedy dla m ≥ M = MN

|Sm − AN | ≤
∞∑

k=N+1

|ak| < ε,

wi¦c

|Sm − A| ≤ |Sm − AN |+ |AN − A| ≤ 2
∞∑

k=N+1

|ak| < 2ε,

co dowodzi naszej tezy. tu

5.36. Wniosek. Przy zaªo»eniach i oznaczeniach Twierdzenia 5.35 mamy
∞∑

k=1

|aσ(k)| < ∞.

Dowód . Wystarczy zastosowa¢ Twierdzenie 5.35 do szeregu warto±ci bezwzgl¦d-
nych, by otrzyma¢ »¡dan¡ zbie»no±¢. tu

Oto przykªad pokazuj¡cy, »e permutacja wyrazów szeregu warunkowo zbie»nego
mo»e zmieni¢ jego sum¦.

5.37. Przykªad. Niech

Sn =
n∑

k=1

(−1)k+1

k

b¦dzie sum¡ cz¦±ciow¡ warunkowo zbie»nego szeregu anharmonicznego. Przez in-
dukcj¦ sprawdzamy, »e

S4n +
1

2
S2n =

2n∑
k=1

1

2k − 1
−

n∑
k=1

1

2k
.

Niech
∞∑

k=1

uk = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

8
+ . . .
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b¦dzie szeregiem. który jest permutacj¡ szeregu anharmonicznego. Permutacja
polega na tym, »e po dwóch kolejnych wyrazach nieparzystych nast¦puje jeden
kolejny parzysty. Niech Un b¦dzie sum¡ cz¦±ciow¡ tego szeregu. Wida¢, »e

U3n = S4n +
1

2
S2n = U3n,

wi¦c

lim
n→∞

U3n =
3

2
log 2.

Zauwa»amy tak»e, »e

U3n+1 − U3n → 0, U3n+2 − U3n → 0,

wi¦c szereg ten jest zbie»ny, a jego suma wynosi 3
2
log 2.

Permutacja wyrazów szeregu warunkowo zbie»nego mo»e tak»e zniweczy¢ jego
zbie»no±¢.

5.38. Przykªad. Niech {nk} b¦dzie ci¡giem liczb naturalnych dobranym tak, aby
n0 = 1 oraz

nk+1−1∑
j=nk

1

2j + 1
> 1.

Rozwa»my nast¦puj¡c¡ permutacj¦ wyrazów szeregu anharmonicznego: Najpierw
nast¦puje n1 kolejnych wyrazów nieparzystych, po nich pierwszy wyraz parzysty;
potem znów n2 wyrazów nieparzystych, drugi parzysty itd. Niech Sn b¦dzie sum¡
cz¦±ciow¡ tej permutacji szeregu anharmonicznego. Jak wida¢

Snk+1 >
k

2
,

wi¦c nowy szereg jest rozbie»ny.

Okazuje si¦, »e przez odpowiedni¡ permutacj¦ wyrazów szeregu warunkowo zbie»-
nego mo»na uzyska¢ ÿwszystko"{ rozbie»no±¢ lub zbie»no±¢ do z góry wybranej
sumy. Mówi o tym nast¦puj¡ce twierdzenie, którego dowód pominiemy.

5.39. Twierdzenie (Riemann). Niech
∑∞

k=1 ak b¦dzie szeregiem warunkowo zbie»-
nym. Dla ka»dego α ∈ R istnieje permutacja wyrazów szeregu σ, taka »e sumy
cz¦±ciowe

Sn =
n∑

k=1

aσ(k)

s¡ zbie»ne do α. Mo»na te» dobra¢ σ tak, by ci¡g sum cz¦±ciowych byª rozbie»ny do
±∞ lub te» nie miaª nawet granicy niewªa±ciwej.
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Niech b¦dzie dany ci¡g {αn,k}∞n,k=0 liczb rzeczywistych. Przez zbie»no±¢ szeregu
powójnego

(5.40)
∞∑

n=0

∞∑
k=0

αn,k

b¦dziemy rozumie¢ zbie»no±c szeregów
∞∑

n=0

An, An =
∑
k=0

αn,k.

Je±li αn,k ≥ 0, to nietrudno zauwa»y¢, »e zbie»no±¢ szeregu (5.40) jest równowa»na
istnieniu staªej C > 0, takiej »e

(5.41)
N∑

n=0

K∑
k=0

αn,k ≤ C

dla ka»dych N, K ∈ N. Dlatego te» fakt zbie»no±ci szeregu podwójnego o wyrazach
nieujemnych b¦dziemy oznacza¢ krótko przez

∞∑
n=0

∞∑
k=0

αn,k < ∞.

W przeciwnym wypadku b¦dziemy pisa¢
∞∑

n=0

∞∑
k=0

αn,k = ∞.

Warunek (5.41) poci¡ga równowa»no±¢
∞∑

n=0

∞∑
k=0

αn,k < ∞ ⇐⇒
∞∑

k=0

∞∑
n=0

αn,k < ∞

dla αn,k ≥ 0.

5.42. Uwa g a. Niech αn,k ∈ R. Je±li
∞∑

n=0

∞∑
k=0

|αn,k| < ∞,

to szereg podwójny
∑∞

n=0

∑∞
k=0 αn,k jest zbie»ny. Wystarczy dwukrotnie skorzysta¢

z Wniosku 5.6. Innymi sªowy, szereg podwójny bezwzgl¦dnie zbie»ny jest zbie»ny.

5.43. Lemat. Je±li αn,k ≥ 0, to
∞∑

n=0

∞∑
k=0

αn,k =
∞∑

k=0

∞∑
n=0

αn,k.
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Dowód . Niech
∞∑

n=0

∞∑
k=0

αn,k = C.

Wtedy dla ka»dych N, K ∈ N

K∑
k=0

N∑
n=0

αn,k =
N∑

n=0

K∑
k=0

αn,k ≤ C,

wi¦c
∞∑

k=0

∞∑
n=0

αn,k ≤ C.

Przez symetri¦ indeksów uzyskujemy tak»e nierówno±¢ przeciwn¡. tu

5.44. Lemat. Je±li
∞∑

n=0

∞∑
k=0

|αn,k| < ∞.

to oba szeregi podwójne o wyrazie ogólnym αn,k s¡ zbie»ne do tej samej sumy.

Dowód . Zbie»no±¢ obu szeregów wynika z Uwagi 5.42. Niech
∞∑

n=0

∞∑
k=0

αn,k = A.

Wtedy dla dowolnego ε > 0 ∣∣∣∣ N∑
n=0

K∑
k=0

−A

∣∣∣∣ < ε

dla dostatecznie du»ych N, K ∈ N, a wobec przemienno±ci sum
N∑

n=0

K∑
k=0

αn,k =
K∑

k=0

N∑
k=0

αn,k

oznacza to, »e
∞∑

k=0

∞∑
n=0

αn,k = A =
∞∑

n=0

∞∑
k=0

αn,k,

do czego d¡»yli±my. tu
Wa»n¡ klas¦ szeregów stanowi¡ szeregi pot¦gowe, tzn. szeregi postaci

∞∑
n=0

anx
n.

Przykªadami takich szeregów, które ju» znamy s¡ m.in.:

(1)
∞∑

k=0

xk = 1
1−x

, o ile |x| < 1;
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(2)
∞∑

k=0

xk

k!
= ex, dla x ∈ R;

(3)
∞∑

k=0

x2k

(2k)!
= cosh x, dla x ∈ R;

(4)
∞∑

k=0

x2k+1

(2k+1)!
= sinh x, dla x ∈ R;

(5)
∞∑

k=0

k xk = x
(1−x)2

, o ile |x| < 1.

Je±li szereg pot¦gowy
∑∞

n=0 anx
n jest zbie»ny, to mo»emy okre±li¢ funkcj¦

f(x) =
∞∑

n=0

an xn.

Jej dziedzina jest zawsze niepusta, gdy» dla x = 0 powy»szy szereg jest oczywi±-
cie zbie»ny. Zajmiemy sie teraz dokªadniejszym badaniem dziedziny takich funkcji.
Dla danego ci¡gu {an}n∈N niech

% = lim sup
n→∞

n
√
|an|.

Wielko±¢

r =


0, % = ∞,

∞, % = 0,

1/%, % ∈ (0,∞).

nazywamy promieniem zbie»no±ci szeregu pot¦gowego
∑∞

n=0 anx
n. Kolejne

twierdzenie wyja±nia nieco, sk¡d taka nazwa.

5.45. Twierdzenie. Niech liczba r b¦dzie promieniem zbie»no±ci szeregu pot¦go-
wego

∑∞
n=0 anx

n. Wtedy

(1) |x| < r ⇒ szereg
∞∑

n=0

anx
n jest zbie»ny bezwzgl¦dnie;

(2) |x| > r ⇒ szereg
∞∑

n=0

anx
n jest rozbie»ny.

Dowód . Aby zbada¢ bezwzgl¦dn¡ zbiezno±¢ szeregu, skorzystamy z kryterium
Cauchy'ego. Otó», skoro

lim sup
n→∞

n
√
|anxn| = |x| lim sup

n→∞

n
√
|an| =

|x|
r

,

o ile r ∈ (0,∞), wi¦c je±li |x| < r, to lim supn→∞
n
√
|anxn| < 1 i szereg jest

zbie»ny bezwzgl¦dnie, je±li za± |x| > r, to szereg jest rozbie»ny. Gdy r = ∞, tzn.
lim supn→∞

n
√
|an| = 0, to szereg jest zbie»ny dla ka»dego x ∈ R. Wreszcie gdy

r = 0, to dla x 6= 0

lim sup
n→∞

n
√
|an| = ∞ ⇒ lim sup

n→∞

n
√
|anxn| = ∞
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i szereg jest rozbie»ny. tu

Kilka przykªadów:

• Dla szeregu
∞∑

n=1

(−1)n+1

n
xn

otrzymujemy promie« zbie»no±ci r = 1. Sprawd¹my jeszcze, co dzieje si¦
dla |x| = 1. Otó» mamy

x = 1 ⇒
∞∑

n=1

(−1)n+1

n
< ∞;

x = −1 ⇒
∞∑

n=1

(−1)n+1

n
(−1)n = −

∞∑
n=1

1

n
= −∞.

Oznacza to, »e szereg ten jest zbie»ny dla x ∈ (−1, 1] i rozbie»ny poza tym,
przy czym wewn¡trz przedziaªu zbie»no±¢ jest bezwzgl¦dna, a w x = 1
warunkowa.

• Rozwa»my
∞∑

n=1

1

n2
xn.

Skoro

1/r = lim sup
n→∞

n

√
1

n2
= lim

n→∞

( 1
n
√

n

)2

= 1,

|x| = 1 ⇒
∞∑

n=1

∣∣∣ 1

n2
xn
∣∣∣ =

∞∑
n=1

1

n2
< ∞,

wi¦c szereg ten jest zbie»ny (i to bezwzgl¦dnie) dla x ∈ [−1, 1] i rozbie»ny
poza tym.

• Dla szeregu
∞∑

n=0

xn

mamy oczywi±cie r = 1 oraz rozbie»no±¢ dla |x| = 1.

• Dla szeregu
∞∑

n=0

xn

n!

otrzymujemy

% = lim sup
n→∞

n

√
1

n!
= lim sup

n→∞

1
n
√

n!
= 0,
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sk¡d r = ∞, co oznacza, »e szereg ten jest zbie»ny (bezwzgl¦dnie) dla
wszystkich x ∈ R.

• Dla szeregu
∞∑

n=0

nn xn

mamy
% = lim sup

n→∞

n
√

nn = lim sup
n→∞

n = ∞,

wi¦c promie« zbie»no±ci wynosi r = 0, czyli szereg ten jest zbie»ny tylko
dla x ∈ {0}.

• Dla szeregu
∞∑

n=0

x2n = 1 + x2 + x4 + . . . =
∞∑

n=0

an xn

mamy

an =

{
1, gdy n jest parzyste,
0, gdy n jest nieparzyste,

czyli

n
√
|an| =

{
1, gdy n jest parzyste
0, gdy n jest nieparzyste,

sk¡d lim supn→∞
n
√
|an| = 1, wi¦c r = 1. Oczywi±cie dla |x| = 1 szereg jest

rozbie»ny.

5.46. Twierdzenie. Je±li
∑∞

n=0 anx
n jest szeregiem pot¦gowym o promieniu zbie»-

no±ci r > 0, to funkcja

f(x) =
∞∑

n=0

anx
n

jest ci¡gªa w przedziale (−r, r).

Dowód . Niech x, y ∈ (−r, r). Istnieje taka liczba R, »e |x|, |y| < R < r. We¹my
dowolne ε > 0. Mamy

|f(x)− f(y)| =
∣∣∣∣ N∑

0

anx
n +

∞∑
n=N+1

anx
n −

N∑
0

any
n −

∞∑
n=N+1

any
n

∣∣∣∣
≤
∣∣∣∣ N∑

0

anx
n −

N∑
0

any
n

∣∣∣∣+ ∞∑
n=N+1

|an||x|n +
∞∑

n=N+1

|an||y|n.

≤
∣∣∣∣ N∑

0

anx
n −

N∑
0

any
n

∣∣∣∣+ 2
∞∑

n=N+1

|an|Rn.



86 Analiza B

Drugi skªadnik powy»szej sumy jest podwojon¡ reszt¡ szeregu zbie»nego, wi¦c
∞∑

n=N+1

|an|Rn < ε,

dla dostatecznie du»ych N . Dla ka»dego N

fN(z) =
N∑
0

anz
n

jest oczywi±cie wielomianem, a wi¦c funkcj¡ ci¡gª¡. Wobec tego

|fN(x)− fN(y)| < ε,

je±li y jest dostatecznie bliskie x. Ostatecznie

|f(x)− f(y)| < 3ε,

je±li y jest dostatecznie bliskie x przy dostatecznie du»ym N , co dowodzi ci¡gªo±ci
funkcji f w przedziale (−r, r). tu
A oto twierdzenie o ci¡gªo±ci szeregu pot¦gowego na brzegu przedziaªu.

5.47. Twierdzenie. Niech
∑∞

n=0 anx
n b¦dzie szeregiem pot¦gowym o promieniu

zbie»no±ci r > 0. Zaªó»my, »e szereg
∑∞

n=0 anr
n jest zbie»ny. Niech

f : (−r, r] 3 x 7−→
∞∑

n=0

anx
n.

Wtedy f jest funkcj¡ ci¡gª¡ na (−r, r]. W szczególno±ci

f(r) = lim
x→r−

f(x).

Dowód . Oczywi±cie wobec poprzedniego twierdzenia pozostaje do rozwa»enia
punkt ci¡gªo±¢ w punkcie r. We¹my wi¦c x ∈ (0, r). Mamy

|f(r)− f(x)| ≤
∣∣∣∣ N∑

0

anr
n −

N∑
0

anx
n

∣∣∣∣+ |
∞∑

n=N+1

anr
n|+ |

∞∑
n=N+1

anx
n|

Pierwsze dwa skªadniki mo»na oszecowa¢ jak wy»ej. Rzeczywi±cie drugi przed-
stawia reszt¦ szeregu z zaªo»enia zbie»nego, a pierwszy ró»nic¦ warto±ci wielomianu.
Istota sprawy le»y w sposobie oszacowania ostatniego skªadnika. Mamy

∞∑
n=N+1

anx
n =

∞∑
n=N+1

anr
n

(
x

r

)n

,

gdzie anr
n jest wyrazem szeregu (znów z zaªo»enia) zbie»nego, a (x

r
)n wyrazem

ci¡gu monotonicznie zbie»nego do zera. Na mocy nierówno±ci Abela

|
∞∑

n=N+1

anxn| ≤ βN

(
x

r

)N+1

≤ βN ,
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gdzie

βN = | sup
m>N

anr
n| → 0,

gdy N → ∞. To pokazuje, »e i trzeci wyraz mo»na uzna¢ za maªy przy dostate-
cznie du»ych N . Reszta dowodu jest ju» powtórzeniem rozumowania z dowodu
poprzedniego twierdzenia. tu

5.48. Przykªad. Rozwa»my wielomian stopnia nie wi¦kszego ni» N

f(x) =
N∑
0

anx
n.

Wtedy

f(x + h) =
N∑
0

an(x + h)n =
N∑
0

an

n∑
k=0

(
n

k

)
xn−khk

=
N∑

k=0

hk

N∑
k

(
n

k

)
anx

n−k =
N∑

k=0

hk

k!

N∑
k

[n]k anx
n−k

=
N∑

k=0

fk(x)

k!
hk,

gdzie

[n]k = n(n− 1)(n− 2) . . . (n− k + 1), fk(x) =
N∑
k

[n]k anx
n−k.

Dla x + h = y otrzymujemy

f(y) =
N∑

k=0

fk(x)

k!
(y − x)j.

5.49. Twierdzenie. Niech b¦dzie dany szereg pot¦gowy f(x) =
∑∞

n=0 anx
n o dodat-

nim promieniu zbie»no±ci r. Wtedy dla ka»dego ustalonego |x| < r i dla |h| < r−|x|
funkcja f rozwija si¦ w szereg pot¦gowy (wokóª punktu x) wedªug wzoru

f(x + h) =
∞∑

k=0

fk(n)

k!
hk,

gdzie fk(x) =
∑∞

n=0[k + n]k ak+nx
n, [k + n]k = (k + n)(k + n− 1) . . . (n + 1).
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Dowód . Mamy

f(x + h) =
∞∑

n=0

an(x + h)n =
∞∑
n=

an

n∑
k=0

(
n

k

)
xn−khk

=
∞∑

n=0

n∑
k=0

(
n

k

)
anx

n−khk.

Skoro
∞∑

n=0

n∑
k=0

(
n

k

)
|an||x|n−k|h|k =

∞∑
n=0

|an|
(
|x|+ |h|

)n
< ∞,

bo |x| + |h| < r, wi¦c szereg podwójny jest bezwzgl¦dnie zbie»ny. Mo»emy zatem
zamieni¢ kolejno±¢ sumowania, otrzymuj¡c

f(x + h) =
∞∑

n=0

n∑
k=0

(
n

k

)
anx

n−khk =
∞∑

k=0

∞∑
n=k

(
n

k

)
anx

n−khk

=
∞∑

k=0

hk

k!

∞∑
n=k

an[n]k xn−k =
∞∑

k=0

hk

k!

∞∑
n=0

[k + n]kak+nx
n

=
∞∑

k=0

fk(x)

k!
· hk,

co ko«czy dowód. tu



6. Ró»niczkowanie

Niech b¦dzie dana funkcja f okre±lona w pewnym otoczeniu punktu x0 ∈ R.
Mówimy, »e f jest ró»niczkowalna w x0 (ma w x0 pochodn¡), je±li iloraz ró»ni-
cowy

x → f(x)− f(x0)

x− x0

ma w punkcie x0 granic¦. Oznaczamy j¡ przez f ′(x0) i nazywamy pochodn¡
funkcji f w punkcie x0. Zatem z de�nicji

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

.

Równowa»nie, oznaczaj¡c h = x0 − x0, mamy

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Czasem te» oznacza si¦ pochodn¡ inaczej:

f ′(x0) =
df(x)

dx

∣∣∣
x=x0

= f ·(x0) = Df(x0).

Pierwsze oznaczenie pochodzi od Lagrange'a, drugie od Leibniza, a trzecie od New-
tona. Najcz¦±ciej b¦dziemy u»ywali dwóch pierwszych.
Wiemy ju», »e

d

dx
ax
∣∣∣
x=x0

= lim
x→x0

ax − ax0

x− x0

= ax0 log a

dla a > 0 i x0 > 0 oraz
d

dx
xα
∣∣∣
x=x0

= lim
x→x0

xα − xα
0

x− x0

= αxα−1
0

dla x0 > 0 i α ∈ R. Zatem zarówno funkcja wykªadnicza o dowolnej podstawie,
jak i funkcja pot¦gowa, s¡ ró»niczkowalne w ka»dym punkcie swojej dziedziny. W
szczególno±ci

(ex)′ = ex, (x)′ = 1

dla ka»dego x ∈ R. �atwo równie» zauwa»y¢, »e funkcja staªa jest wsz¦dzie ró»niczkowalna,
a jej pochodna jest zawsze równa 0.
6.1. Przykªad. Rozwa»my funkcj¦ zadan¡ szeregiem pot¦gowym

f(x) =
∞∑

n=0

anx
n, x ∈ (r, r),

gdzie r > 0 jest promieniem zbie»no±ci tego szeregu. Jak pami¦tamy, dla ka»dego
ustalonego x ∈ (−r, r) i |h| < r − |x|,

f(x + h)− f(x) =
∞∑

n=1

αn(x)hn,
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gdzie

αk(x) =
∞∑

k=n

[k]nx
k, [k]n =

k!

n!
.

Zatem
f(x + h)− f(x)

h
=

∞∑
n=1

αn(x)hn−1

i w konsekwencji

f ′(x) = lim
h→0

f(x + h)− f(x)

h
= α1(x),

czyli

f ′(x) =
∞∑

n=1

nxn−1.

Okazuje si¦ zatem, »e funkcja zadana szeregiem pot¦gowym jest ró»niczkowalna w
ka»dym punkcie otwartego przedziaªu zbie»no±ci, a jej pochodna wyra»a si¦ tak»e
szeregiem pot¦gowym, który, jak ªatwo spostrzec, ma ten sam promie« zbie»no±ci
r. Ponadto jest on zbudowany z pochodnych wyrazów szeregu. Warto zapami¦ta¢
reguª¦, »e szereg pot¦gowy ró»niczkujemy wyraz po wyrazie.

6.2. Przykªad. Obliczmy pochodn¡ funkcji logarytmicznej w punkcie x0 > 0.
Mamy

log(x0 + h)− log x0

h
=

log(1 + h
x0

)

x0/h
· 1

x0

.

Jako »e

lim
z→0

log(1 + z)

z
= 1,

widzimy, »e

(log)′(x0) =
1

x0

.

6.3. Fakt. Niech b¦dzie dana funkcja f okre±lona w otoczeniu punktu x0. Funkcja
f jest ró»niczkowalna w x0, wtedy i tylko wtedy gdy istniej¡ liczba α i funkcja ω
okre±lona w otoczeniu 0, takie »e

(6.4) f(x + h) = f(x0) + m · h + ω(h) · h,

gdzie limh→0 ω(h) = 0. Je±li tak jest, to

m = f ′(x0).

Dowód . Je±li f jest ró»niczkowalna, kªadziemy

ω(h) =
f(x0 + h)− f(x0)

h
− f ′(x0) =

f(x0 + h)− f(x0)− f ′(x0)h

h

dla dostatecznie maªych h. Z de�nicji pochodnej limh→0 ω(h) = 0, a prosty rachunek
pokazuje, »e zachodzi (6.4), je±li za m przyj¡¢ f ′(x0).
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Je±li za± speªniony jest warunek (6.4), to widzimy, »e

f(x0 + h)− f(x0)

h
= m + ω(h),

wi¦c

lim
h→0

f(x0 + h)− f(x0)

h
= m,

co oznacza, »e f jest ró»niczkowalna w x0 i f ′(x0) = m. tu
Zauwa»my, »e warunek (6.4) mo»na wyrazi¢ tak:

f(x) = g(x) + ω(x− x0)(x− x0),

gdzie g(x) = m(x − x0) jest funkcj¡ liniow¡. Zatem (6.4) mówi, »e f posiada
aproksymacj¦ liniow¡, gdy» ró»nica

f(x)− g(x) = ω(x− x0)(x− x0)

d¡»y do 0 szybciej ni» czynnik liniowy, gdy x → x0.
B¦dziemy mówili, »e prosta uko±na

y = m(x− x0) + f(x0)

jest styczna do wykresu funkcji f okre±lonej w otoczeniu punktu x0, je±li odlegªo±¢
punktu Px = (x, f(x)) le»¡cego na wykresie funkcji od prostej jest maªa w porów-
naniu z jego odlegªo±ci¡ od punktu Px0 = (x0, f(x0)), gdy x d¡»y do x0, czyli
je±li

lim
x→x0

PxP
′
x

PxPx0

= 0,

gdzie P ′
x jest rzutem prostopadªym Px na prost¡. Mamy

PxP
′
x =

|f(x)− f(x0)−m(x− x0)|√
1 + m2

oraz
PxPx0 =

√
(x− x0)2 + (f(x)− f(x0)2.

Zatem prosta y = m(x−x0)+f(x0) jest styczna do wykresu funcji f , wtedy i tylko
wtedy gdy

(6.5) lim
x→x0

|f(x)− f(x0)−m(x− x0)|√
(x− x0)2 + (f(x)− f(x0))2

= 0.

6.6. Fakt. Prosta y = m(x−x0)+f(x0) jest styczna do wykresu funkcji f okre±lonej
w otoczeniu punktu x0, wtedy i tylko wtedy gdy f jest ró»niczkowalna w x0 i f ′(x0) =
m.

Dowód . Dziel¡c licznik i mianownik w (6.5) przez x− x0, widzimy, »e styczno±¢
jest równowa»na warunkowi

(6.7) lim
x→x0

|f(x)−f(x0)
x−x0

−m|√
1 +

(
f(x)−f(x0)

x−x0

)2
= 0.
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Przypu±¢my, »e dla pewnego ci¡gu xn → x0(f(xn)− f(x0)

xn − x0

)2

→∞.

Wtedy

|f(xn)−f(x0)
xn−x0

−m|√
1 +

(
f(xn)−f(x0)

xn−x0

)2
=

|1− m
f(xn)−f(x0)

xn−x0

|√
1(

f(xn)−f(x0)
xn−x0

)2 + 1
→ 1,

wi¦c nie ma mowy o styczno±ci. Wida¢ st¡d, »e warunkiem równowa»nym (6.7) jest

lim
x→x0

∣∣∣f(x)− f(x0)

x− x0

−m
∣∣∣ = 0,

a to jest nasza teza. tu

6.8. Fakt. Je»eli funkcja f okre±lona w otoczeniu punktu x0 jest ró»niczkowalna w
x0, to jest te» ci¡gªa w tym punkcie.

Dowód. Dowód wynika natychmiast z istnienia aproksymacji liniowej (6.4). �

6.9. Przykªad. Niech f(x) = |x| i niech x0 = 0. Iloraz ró»nicowy

f(x)− f(x0)

x− x0

=
|x|
x

nie ma granicy, gdy x → 0, wi¦c f nie jest ró»niczkowalna w tym punkcie. Wykres
tej funkcji ma w punkcie (0, 0) ÿostrze" i nie ma stycznej.

6.10. Fakt. Niech b¦dzie dana funkcja f okre±lona w otoczeniu x0 i ró»niczkowalna
w tym punkcie. Je±li f ma ekstremum lokalne w x0, to f ′(x0) = 0.

Dowód. Przypu±¢my, »e f ma w x0 maksimum lokalne. Wtedy dla dostatecznie
maªych h 6= 0

f(x0 − h) ≤ f(x0),

sk¡d wida¢, »e lewostronne ilorazy ró»nicowe b¦d¡ nieujemne, a prawostronne
niedodatnie. Zatem

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= 0.

W przypadku minimum lokalnego rozumujemy analogicznie. �

6.11. Fakt. Niech f, g b¦d¡ funkcja mi okre±lonymi w otoczeniu punktu x0. Je»eli
obie s¡ ró»niczkowalne w x0 , to tak»e funkcje f +g i f ·g s¡ ró»niczkowalne w tym
punkcie i

(f + g)′(x0) = f ′(x0) + g′(x0), (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).
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Je»eli ponadto g(x0) 6= 0, to funkcja f/g, która jest dobrze okre±lona w pewnym
(by¢ mo»e mniejszym) otoczeniu x0, jest ró»niczkowalna w x0 i(

f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2
.

Dowód. Mamy

(f + g)(x0 + h)− (f + g)(x0)

h
=

f(x0 + h)− f(x0)

h
+

g(x0 + h)− g(x0)

h
,

sk¡d po przej±ciu do granicy otrzymujemy pierwsz¡ cz¦±¢ tezy. Mamy te»

(f · g)(x0 + h)− (f · g)(x0)

h
=

f(x0 + h)− f(x0)

h
· g(x0 + h)

+ f(x0) ·
g(x0 + h)− g(x0)

h
·,

co poci¡ga drug¡ cz¦±¢ tezy, czyli wzór Leibniza.
Trzeci¡ cz¦±¢ dotycz¡c¡ ilorazu udowodnimy korzystaj¡c z drugiej. Mamy(

f

g

)′
(x0) =

(
f · 1

g

)′
(x0) =

f ′(x0)

g(x0)
+ f(x0) ·

(
1

g

)′
(x0),

wi¦c wystarczy pokaza¢, »e (
1

g

)′
(x0) = − g′(x0)

g(x0)2
,

a to wynika natychmiast z to»samo±ci

1

h

(
1

g
(x0 + h)− 1

g
(x0)

)
=

1

h
· g(x0)− g(x0 + h)

g(x0 + h)g(x0)
,

ci¡gªo±ci g w x0 i przej±cia granicznego. �

O ró»niczkowalno±ci funkcji f w punkcie x0 mo»na mówi¢ tylko wtedy, gdy jest
ona okre±lona w pewnym otoczeniu (czyli przedziale otwartym) zawieraj¡cym ten
punkt. Dlatego sformuªowanie f jest ró»niczkowalna w x0 b¦dzie odt¡d oznacza¢,
»e f jest okre±lona w otoczeniu x0 i ró»niczkowalna w x0.

6.12. Twierdzenie. Niech g b¦dzie funkcj¡ ró»niczkowaln¡ x0, a f ró»niczkowaln¡
w y0 = g(x0). Wtedy funkcja h = f ◦ g jest ró»niczkowalna w x0 i h′(x0) =
f ′(y0)g

′(x0). Innymi sªowy,

(f ◦ g)′(x0) = f ′(g(x0))g
′(x0).

Dowód. Jako »e g jest ró»niczkowalna, ma aproksymacj¦ liniow¡

g(x0 + h) = g(x0) + g′(x0)h + ωg(h)h,

gdzie ωg(h) → 0, gdy h → 0. Oznaczmy

k = k(h) = g′(x0)h + ωg(h)h.
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Podobnie ró»niczkowalno±¢ f oznacza, »e

f(y0 + k) = f(y0) + f ′(y0)k + ωf (k)k,

gdzie ωf (k) → 0, gdy k → 0.
Zatem

f ◦ g(x0 + h)− f ◦ g(x0)

h
=

f(y0 + k)− f(y0)

h

=
f ′(y0)k + ωf (k)

h
= f ′(y0)g

′(x0) + Ω(h),

gdzie
Ω(h) = ωg(h) + ωf

(
k(h)

)(
g′(x0) + ωg(h)

)
→ 0,

gdy h → 0. Przechodz¡c z h do 0, otrzymujemy tez¦. �

6.13. Twierdzenie. Je»eli funkcja f : (a, b) → (c, d) jest wzajemnie jednoznaczna
i ma w punkcie x0 ∈ (a, b) niezerow¡ pochodn¡, to funkcja odwrotna g : (c, d) →
(a, b) jest ró»niczkowalna w y0 = f(x0) i g′(y0) = 1/f ′(x0). Innymi sªowy,

(f−1)′(f(x0)) =
1

f ′(x0)
, lub (f−1)′(y0) =

1

f ′(f−1(y0))
.

Dowód. Oznaczmy funkcj¦ odwrotn¡ do f przez g. Mamy

lim
y→y0

g(y)− g(y0)

y − y0

= lim
y→y0

g(y)− g(y0)

f(g(y))− f(g(y0))

= lim
x→x0

x− x0

f(x)− f(x0)
=

1

f ′(x0)
.

�

Je»eli funkcja f : (a, b) → R jest ró»niczkowalna w ka»dym punkcie x ∈ (a, b),
to mówimy, »e jest ró»niczkowalna w przedziale (a, b). W ten sposób pojawia
si¦ nowa funkcja

(a, b) 3 x 7→ f ′(x) ∈ R,

zwana funkcj¡ pochodn¡.

6.14. Twierdzenie. Funkcja pochodna na odcinku otwartym I ma wªasno±¢ Dar-
boux.

Dowód. Niech
f ′(a) < A < f ′(b)

dla pewnych a < b z odcinka I. Nale»y pokaza¢, »e istnieje punkt a < c < b, taki
»e f ′(c) = A.
Przypu±¢my na razie, »e A = 0. Skoro f ′(a) < 0 i f ′(b) > 0, to dla pewnych

a < a1 < b1 < b jest
f(a1) < f(a), f(b1) < f(b),
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a wi¦c w »adnym z punktów a, b funkcja ci¡gªa f nie przyjmuje swojej najmniejszej
warto±ci na odcinku [a, b]. Istnieje wi¦c c ∈ (a, b), w którym ta najmniejsza warto±¢
jest przyj¦ta i tam te» f ′(c) = 0.
Je±li teraz A jest dowolne, stosujemy powy»sze rozumowanie do funkcji

g(x) = f(x)− Ax,

która speªnia
g′(a) < 0 < g′(b).

Mamy wi¦c g′(c) = 0 dla pewnego a < c < b, a st¡d f ′(c) = A. �

6.15. Twierdzenie (Rolle). Niech f : [a, b] → R, gdzie a < b, b¦dzie funkcj¡
ci¡gª¡ i ró»niczkowaln¡ w (a, b). Je»eli ponadto f(a) = f(b), to istnieje c ∈ (a, b),
takie »e f ′(c) = 0.

Dowód. Funkcja f jako ci¡gªa na przedziale domkni¦tym przyjmuje najwi¦ksz¡ i
najwi¦ksz¡ warto±¢. Je±li obie s¡ przyj¦te na ko«cach przedziaªu, to wobec f(a) =
f(b) funkcja jest staªa i nasza teza jest oczywista. W przeciwnym wypadku f ma
ekstremum lokalne (i globalne) w c ∈ (a, b) i w tym punkcie musi by¢ f ′(c) = 0. �

6.16. Twierdzenie (Lagrange). Niech f : [a, b] → R, gdzie a < b, b¦dzie funkcj¡
ci¡gª¡ i ró»niczkowaln¡ w (a, b). Wtedy istnieje c ∈ (a, b), takie »e

f ′(c) =
f(b)− f(a)

b− a
.

Dowód. Niech

g(x) =
f(b)− f(a)

b− a
(x− a) + f(a), x ∈ [a, b].

Jak ªatwo zauwa»y¢, funkcja F = f − g speªnia zaªo»enia twierdzenia Rolle'a, wi¦c
F ′(c) = 0 dla pewnego c ∈ (a, b), a st¡d

f ′(c) = g′(c) =
f(b)− f(a)

b− a
.

�

Z twierdzenia Lagrange'a ªatwo otrzyma¢ nast¦puj¡ce trzy wnioski.

6.17. Wniosek. Je±li f : (a, b) → R jest ró»niczkowalna i f ′(x) = 0 dla x ∈ (a, b),
to f jest funkcj¡ staª¡.

6.18. Wniosek. Funkcja f ró»niczkowalna w przedziale (a, b) jest rosn¡ca (male-
j¡ca), wtedy i tylko wtedy gdy jej pochodna w tym przedziale jest nieujemna (nie-
dodatnia).

6.19. Wniosek. Je»eli funkcja f okre±lona w przedziale (a, b) ma dodatni¡ (ujem-
n¡) pochodn¡ w tym przedziale, to jest ±ci±le rosn¡ca (malej¡ca).
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Niech b¦dzie dana funkcja f : (a, b) → R. Funkcj¦ ró»niczkowaln¡ F : (a, b) →
R, tak¡ »e F ′(x) = f(x) dla x ∈ (a, b) nazywamy funkcj¡ pierwotn¡ funkcji
f . Oczywi±cie, je±li F jest pierwotn¡ f , to i Fc(x) = F (x) + c jest pierwotn¡ f ,
wi¦c funkcja pierwotna (o ile istnieje) nie jest wyznaczona jednoznacznie. Tym
niemniej, dwie ró»ne funkcje pierwotne na odcinku mog¡ si¦ ró»ni¢ tylko o staª¡.
Rzeczywi±cie, je±li

F ′
1(x) = f(x) = F ′

2(x), x ∈ (a, b),

to (F1−F2)
′(x) = F ′

1(x)−F ′
2(x) = 0, wi¦c na mocy Wniosku 6.17, funkcja F1−F2

jest staªa.

6.20. Lemat. Funkcja f zadana szeregiem pot¦gowym

f(x) =
∞∑

n=0

anx
n, x ∈ (r, r),

gdzie r > 0 jest promieniem zbie»no±ci tego szeregu, ma zawsze funkcj¦ pierwotn¡.
Wyra»a si¦ ona szeregiem pot¦gowym

F (x) =
∞∑

n=0

an

n + 1
xn+1

o tym samym promieniu zbie»no±ci.

Dowód . Najpierw sprawdzamy, »e promie« zbie»no±ci nowego szeregu jest tak»e
równy r, a potem ró»niczkuj¡c wyraz po wyrazie przekonujemy si¦, »e F ′ = f . tu

Nie ka»da jednak funkcja ma pierwotn¡. Wystarczy przypomnie¢ sobie, »e funkcja
pochodna ma zawsze wªasno±¢ Darboux (por. Twierdzenie 6.14). Zatem funkcja
nie maj¡ca tej wªasno±ci, a w szczególno±ci funkcja maj¡ca nieci¡gªo±ci pierwszego
rodzaju, nie mo»e mie¢ pierwotnej. Pó¹niej zobaczymy jednak, »e ka»da funkcja
ci¡gªa ma pierwotn¡.

6.21. Przykªad. Korzystaj¡c z lematu rozwiniemy funkcj¦ logarytmiczn¡ w szereg
pot¦gowy. Niech

g(x) = log(1 + x), |x| < 1.

Funkcja pochodna rozwija si¦ w szereg geometryczny

g′(x) =
1

1 + x
=

∞∑
n=0

(−1)nxn

o promieniu zbie»no±ci r = 1, wi¦c

g(x) =
∞∑

n=0

(−1)n

n + 1
xn+1 =

∞∑
n=1

(−1)n+1xn

n

dla |x| < 1.
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Mówimy, »e funkcja g : (a, b) → R zmienia znak z ujemnego na dodatni w
punkcie c ∈ (a, b), je±li istnieje h > 0, takie »e (c− h, c + h) ⊂ (a, b) oraz

f(x)


< 0, c− h < x < c,

= 0, x = c,

> 0, c < x < x + h.

Analogicznie de�niujemy zmian¦ znaku z dodatniego na ujemny.
A oto kolejny wniosek z twierdzenia Lagrange'a.

6.22. Wniosek. Niech f b¦dzie ró»niczkowalna w (a, b). Je±li pochodna f ′ zmienia
w punkcie x0 znak z ujemnego na dodatni (z dodatniego na ujemny), to f ma w x0

±cisªe minimum (maksimum) lokalne.

Dowód . Przypu±¢my, »e pochodna zmienia znak w x0 z ujemnego na dodatni.
Wtedy dla x dostatecznie bliskich x0

f(x)− f(x0) = f ′(c(x))(x− x0) > 0,

gdzie c(x) le»y w odcinku otwartym min{x, x0}, max{x, x0}), wi¦c x0 jest punktem
±cisªego minimum. Podobnie rozumujemy w przypadku, gdy pochodna zmienia
znak z dodatniego na ujemny. tu

Twierdzenie Lagrange'a pozwala te» na nast¦puj¡ce wa»ne uogólnienie.

6.23. Twierdzenie (Cauchy). Niech f, g : [a, b] → R, gdzie a < b, b¦d¡ funkcjami
ci¡gªymi i ró»niczkowalnymi w (a, b). Niech ponadto g′(x) 6= 0, a < x < b. Wtedy
istnieje c ∈ (a, b), takie »e

f ′(c)

g′c)
=

f(b)− f(a)

g(b)− g(a)
.

Dowód . Bez straty ogólno±ci mo»emy przyj¡¢, »e g′ > 0 na [a, b]. Niech g(a) = α,
g(b) = β. Wtedy

f(b)− f(a)

g(b)− g(a)
=

f ◦ g−1(β)− f ◦ g−1(α)

β − α
,

wi¦c na mocy twierdzenia Lagrange'a

f(b)− f(a)

g(b)− g(a)
= (f ◦ g−1)′(γ) =

f ′(g−1(γ))

g′(g−1(γ))

dla pewnego α < γ < β. Kªad¡c c = g−1(γ), otrzymujemy tez¦. tu

6.24. Uwa g a. Cz¦sto wygodnie jest punkt po±redni czy to w twierdzeniu La-
grange'a, czy Cauchy'ego, zapisywa¢ w postaci

c = a + θ(b− a),

gdzie θ ∈ (0, 1). Zauwa»my te», »e oba wzory obowi¡zuj¡ tak»e dla b < a.



98 Analiza B

6.25. Przykªad. Niech f(x) = sin x. Stosuj¡c twierdzenie Lagrange'a z a = 0,
b = x, otrzymujemy

sin x = x cos θx, x ∈ R,

dla pewnego 0 < θ < 1. Natomiast stosuj¡c twierdzenie Cauchy'ego do funkcji
f(x) = sin x i g(x) = x2 na tym samym przedziale, mamy

sin x

x2
=

cos ϑx

2ϑx
,

sk¡d

sin x =
x cos ϑx

2ϑ
dla pewnego 0 < ϑ < 1.

Jako wniosek z twierdzenia Cauchy'ego mo»na otrzyma¢ tak bardzo lubiane
reguªy de l'Hospitala.

6.26. Wniosek (de l'Hospital). Niech b¦d¡ dane funkcje ró»niczkowalne

f, g : (a, b) → R,

gdzie a ∈ R, b ∈ R ∪ {∞}. Zaªó»my, »e g′(x) 6= 0 dla a < x < b, a ponadto

lim
x→b−

f ′(x)

g′(x)
= β ∈ R ∪ {±∞}.

Przy tych zaªo»eniach ka»dy z nast¦puj¡cych warunków

lim
x→b−

f(x) = lim
x→b−

g(x) = 0, lim
x→b−

g(x) = ∞

poci¡ga

lim
x→b−

f(x)

g(x
= lim

x→b−

f ′(x)

g′(x)
= β.

6.27. Uwa g a. Warunek

lim
x→b−

f(x) = lim
x→b−

g(x) = 0

nazywa si¦ krótko symbolem 0
0
(pierwsza reguªa de l'Hospitala), natomiast warunek

lim
x→b−

g(x) = ∞

symbolem ∞
∞ (druga reguªa de l'Hospitala).

Dowód. Dowód przeprowadzimy dla przypadku β ∈ R pozostawiaj¡c uzupeªnienie
go Czytelnikowi.
Niech ε > 0. Na mocy zaªo»enia o istnieniu granicy ilorazu pochodnych i twierdzenia

Cauchy'ego istnieje a < x0 < b, takie »e dla ró»nych x, y > x0∣∣∣∣f(y)− f(x)

g(y)− g(x)
− β

∣∣∣∣ =

∣∣∣∣f ′(c)g′(c)
− β

∣∣∣∣ < ε,
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gdzie x < c < y. St¡d ∣∣∣∣ f(y)
g(y)

− f(x)
g(y)

1− g(x)
g(y)

∣∣∣∣ < ε

i po prostych przeksztaªceniach∣∣∣∣f(y)

g(y)
− β

∣∣∣∣ < ε

∣∣∣∣1− g(x)

g(y)

∣∣∣∣+ β

∣∣∣∣g(x)

g(y)

∣∣∣∣+ ∣∣∣∣f(x)

g(y)

∣∣∣∣.
Je±li teraz speªnione jest zaªo»enie pierwszej reguªu de l'Hospitala, to, przechodz¡c
z x do niesko«czono±ci, mamy ∣∣∣∣f(y)

g(y)
− β

∣∣∣∣ ≤ ε

dla y > x0. Je±li natomiast przyjmiemy zaªo»enie drugiej reguªy, to dla znajdziemy
takie x0 < y0 < b, »e ∣∣∣∣f(y)

g(y)
− β

∣∣∣∣ < (3 + β)ε

dla y > y0. W ten sposób dowód zostaª zako«czony. �

Niech f : (a, b) → R b¦dzie funkcj¡ ró»niczkowaln¡. Mo»e si¦ okaza¢, »e funkcja
pochodna f ′ jest ró»niczkowalna w jakim± punkcie x0 ∈ (a, b). Mówimy wtedy, »e
funkcja f jest dwukrotnie ró»niczkowalna w x0, a pochodn¡ (f ′)′(x0) nazywamy
drug¡ pochodn¡ f w x0 i oznaczamy przez f ′′(x0). Piszemy tak»e

f ′′(x0) =
d2

dx2
f(x)

∣∣
x=x0

.

6.28. Fakt. Niech b¦dzie dana funkcja f okre±lona w otoczeniu punktu x0 i dwukrot-
nie ró»niczkowalna w tym punkcie. Wtedy istnieje funkcja Ω okre±lona w otoczeniu
0, taka »e

(6.29) f(x0 + h) = f(x0) + f ′(x0)h +
1

2
f ′′(x0)h

2 + Ω(h),

gdzie

lim
h→0

Ω(h)

h2
= 0.

Dowód. Mamy

Ω(h)

h2
=

f(x0 + h)− f(x0)− f ′(x0)h− 1
2
f ′′(x0)h

2

h2
,

sk¡d na mocy twierdzenia Cauchy'ego

lim
h→0

Ω(h)

h2
= lim

h→0

f ′(x0 + θh)− f ′(x0)

2θh
− 1

2
f ′′(x0) = 0.

�
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6.30. Fakt. Niech b¦dzie dana funkcja f okre±lona w otoczeniu punktu x0 i dwukrot-
nie ró»niczkowalna w tym punkcie. Je±li istniej¡ liczby a, b, c, takie »e

(6.31) f(x0 + h) = a + bh + ch2 + Ω(h),

gdzie limh→0
Ω(h)
h2 = 0, to

a = f(x0), b = f ′(x0), c =
1

2
f ′′(x0).

Dowód. Przechodz¡c z h do granicy w zerze, widzimy, »e a = f(x0). Podstawiaj¡c
t¦ warto±¢ do wzoru i dziel¡c przez h, dostajemy

f(x0 + h)− f(x0)

h
= b + ch +

Ω(h)

h
,

sk¡d po przej±ciu z h do zera mamy b = f ′(x0). Aby obliczy¢ c, napiszmy

c =
f(x0 + h)− f(x0)− f ′(x0)h

h2
+

Ω(h)

h2
.

St¡d na mocy twierdzenia Cauchy'ego

c = lim
h→0

f(x0 + h)− f(x0)− f ′(x0)h

h2

= lim
h→0

f ′(x0 + θh)− f ′(x0)h

2θh
=

1

2
f ′′(x0).

�

6.32. Przykªad. Okazuje si¦, »e istniej¡ jednak funkcje ró»niczkowalne speªniaj¡ce
warunek (6.30), lecz nie maj¡ce w x0 drugiej pochodnej. Przykªadem takiej funkcji
jest

φ(x) =

{
x3 sin 1

x
, x 6= 0,

0, x = 0.

Rzeczywi±cie, |φ(x)| ≤ |x|3 i

φ′(x) =

{
3x2 sin 1

x
− 1

x
sin 1

x
, x 6= 0,

0, x = 0,

ale iloraz ró»nicowy
φ′(x)− φ′(0)

x
= 3x sin

1

x
− sin

1

x
nie ma granicy przy x → 0.

6.33. Wniosek. Je»eli f jest funkcj¡ okre±lon¡ w otoczeniu punktu a i dwukrotnie
ró»niczkowaln¡ w a, to warunki

f ′(a) = 0, f ′′(a) 6= 0

poci¡gaj¡ istnienie w a ±cisªego ekstremum lokalnego. Je±li f ′(a) > 0, jest to mini-
mum. Je±li za± f ′(a) > 0 { maksimum.
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Dowód. Rzeczywi±cie, na mocy Faktu 6.28

f(a + h)− f(a) =

(
1

2
f ′′(a) +

Ω(h)

h2

)
h2

dla maªych h, gdzie znak wyra»enia po prawej zale»y tylko od f ′′(a), gdy»

Ω(h)

h2
→ 0, h → 0.

�

Pochodne wy»szych rz¦dów de�niujemy indukcyjnie. Aby mo»na byªo mówi¢ o
pochodnej rz¦du n+1 w punkcie x0, funkcja f musi by¢ n-krotnie ró»niczkowalna
w pewnym otoczeniu x0. Je±li funkcja pochodna rz¦du n, któr¡ oznaczamy przez
f (n), jest ró»niczkowalna w x0, to jej pochodn¡ nazywamy pochodn¡ rz¦du n + 1
funkcji f w x0. Zatem

f (n+1)(x0) = (f (n))′(x0).

Pochodn¡ rz¦du n nazywamy te» krótko n-t¡ pochodn¡. Piszemy tak»e

f (n)(x)) =
dn

dxn
f(x)

∣∣
x=x0

.

6.34. Twierdzenie (Wzór Taylora-Cauchy'ego). Niech f b¦dzie funkcj¡ n-krotnie
ró»niczkowaln¡ w przedziale (a, b). Wtedy dla ka»dych x, y ∈ (a, b)

f(y) =
n−1∑
k=0

f (k)(x)

k!
(y − x)k + Rn(x, y),

gdzie

Rn(x, y) = (1− ϑ)n−1f (n)(x + ϑ(y − x))

(n− 1)!
(y − x)n

dla pewnego ϑ = ϑ(x, y) ∈ (0, 1).

Dowód . Niech

rn(h) = f(y)−
n−1∑
k=0

f (k)(y − h)

k!
hk

dla a < y − h < b. Jak ªatwo zauwa»y¢

rn(0) = 0, rn(y − x) = Rn(y − x).

Ponadto funkcja rn jest ró»niczkowalna i

r′n(h) = −f ′(y − h) +
n−1∑
k=1

(
f (k+1)(y − h)

k!
hk − f (k)(y − h)

(k − 1)!
hk−1

)
=

f (k)(y − h)

(n− 1)!
hn−1.

(6.35)
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Zatem na mocy twierdzenia Lagrange'a

rn(h) = r′n(θh)h =
f (k)(y − θh)

(n− 1)!
(θh)n−1 · h

= (1− ϑ)n−1f (k)(y − (1− ϑ)h)

(n− 1)!
hn

dla pewnego 0 < θ = 1− ϑ < 1. Podstawiaj¡c h = y− x, otrzymujemy nasz¡ tez¦.
tu

Przy ustalonym x = x0 wielomian

φn−1(y) =
n−1∑
k=0

f (k)(x0)

k!
(y − x)k,

nazywamy wielomianem Taylora, a reszt¦ Rn(x0, y) { reszt¡ Taylora funkcji
f .
Mody�kacja poprzedniego dowodu daje now¡ wersj¦ twierdzenia Taylora.

6.36. Twierdzenie (Wzór Taylora-Lagrange'a). Niech f b¦dzie funkcj¡ n-krotnie
ró»niczkowaln¡ w przedziale (a, b). Wtedy dla ka»dych x, y ∈ (a, b)

f(y) =
n−1∑
k=0

f (k)(x)

k!
(y − x)k + Rn(x, y),

gdzie

Rn(x, y) =
f (n)(x + θ(y − x))

n!
(y − x)n

dla pewnego θ = θ(x, y) ∈ (0, 1).

Dowód. Niech jak poprzednio

rn(h) = f(y)−
n−1∑
k=0

f (k)(y − h)

k!
hk

dla a < y − h < b. Tym razem zastosujemy twierdzenie Cauchy'ego o wspólnym
punkcie po±rednim dla ilorazu. Na mocy (6.35) mamy

rn(h)

hn
=

r′n(θh)

n(θh)n−1
=

f (k)(y − θh)

n!
.

Po podstawieniu h = y − x otrzymujemy nasz¡ tez¦. �

6.37. Wniosek. Niech funkcja f speªnia zaªo»enia twierdzenia Taylora. Ustalmy
x0 ∈ (a, b). Wtedy

(6.38) lim
y→x0

Rn(x0, y)

(y − x0)n
=

f (n)(x0)

n!
.
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W szczególno±ci istnieje staªa C > 0, taka »e dla y dostatecznie bliskich x0

(6.39) |Rn(x0, y)| ≤ C|y − x0|n.

Dowód. Rzeczywi±cie,
R1(x0, y)

y − x0

=
f(y)− f(x0)

y − x)

,

wi¦c
lim

y→x0

R1(x0, y) = f ′(x0)

i nasza teza jest prawdziwa w przypadku n = 1. Krok indukcyjny umo»liwia
nast¦puj¡ce spostrze»enie. Z de�nicji reszty

Rn(x0, y) = f(y)−
n−1∑
k=0

f (k)(x0)

k!
(y − x0)

k

wida¢, »e

R′
n(x0, y) = f ′(y)−

n−2∑
k=0

(f ′)(k)(x0)

k!
(y − x0)

k.

Zatem pochodna Rn jest reszt¡ stopnia n − 1 funkcji pochodnej f ′. Je±li zatem
zaªo»ymy indukcyjnie, »e wzór (6.38) jest speªniony dla pewnego n − 1 w przy-
padku funkcji pochodnej, to stosuj¡c twierdzenie pierwsz¡ reguª¦ de l'Hospitala,
otrzymamy

lim
y→x0

Rn(f, x0, y)

(y − x0)n
= lim

y→x0

Rn−1(f
′, x0, y)

nyn−1

=
(f ′)(n−1)(x0)

n(n− 1)!
=

f (n)(x0)

n!
,

(6.40)

a o to wªa±nie nam chodziªo. �

Gdy punkt x0 jest ustalony, wygodniej jest formuªowa¢ i zapisywa¢ twierdzenie
Taylora w nast¦puj¡cej równowa»nej postaci.

6.41. Twierdzenie (Wzór Taylora). Niech f b¦dzie funkcj¡ n-krotnie ró»niczkowaln¡
w otoczeniu punktu x0. Wtedy dla dostatecznie maªych h

f(x0 + h) =
n−1∑
k=0

f (k)(x0)

k!
hk + Rn(h),

gdzie

Rn(h) =
f (n)(x0 + θh)

n!
hn = (1− ϑ)n−1f (n)(x0 + θh)

(n− 1)!
hn

dla pewnych 0 < θ, ϑ < 1. Ponadto

lim
h→0

Rn(h)

hn
=

f (n)(x0)

n!
.
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Czasem mo»na otrzyma¢ rozwini¦cie funkcji w sum¦ cz¦±ciow¡ szeregu pot¦-
gowego, nie wiedz¡c dokªadnie, jak wygl¡daj¡ jej pochodne. Kolejne twierdzenie
umo»liwia sprawdzenie, czy dane rozwini¦cie jest rzeczywi±cie rozwini¦ciem Tay-
lora. Okazuje si¦, »e jedynym istotnym warunkiem jest, by reszta miaªa wªasno±¢
(6.39).

6.42. Twierdzenie (Wzór Taylora-Peano). Niech f b¦dzie funkcj¡ n-krotnie ró»niczkowaln¡
w przedziale (a, b). Je±li dla pewnego x0 ∈ (a, b) i dostatecznie maªych h

f(x0 + h) =
n−1∑
k=0

ckh
k + rn(h),

gdzie
|rn(h)| ≤ Cnh

n

dla pewnego Cn > 0, to

ck =
f (k)(x0)

k!
, 0 ≤ k ≤ n− 1.

Zatem rn(h) = Rn(x0, x0 + h) jest reszt¡ Taylora.

Dowód. I tym razem b¦dziemy rozumowa¢ indukcyjnie. Je±li n = 1 i

f(x0 + h) = c0 + r1(h), |r1(h)| ≤ C1|h|,
to przechodz¡c z h do 0, dostajemy c0 = f(x0). Zaªó»my wi¦c, »e teza zachodzi dla
pewnego n oraz

f(x0 + h) =
n∑

k=0

ckh
k + rn+1(h),

gdzie
|rn+1(h)| ≤ Cn+1h

n+1

dla pewnego Cn+1 > 0. Wtedy

f(x0 + h) =
n−1∑
k=0

ckh
k + ρn(h),

gdzie
|ρn(h)| = |cnh

n + rn+1(h)| ≤ (|cn|+ Cn+1|h|)|h|n,
wi¦c na mocy zaªo»enia indukcyjnego

ck =
f (k)(x0)

k!
, 0 ≤ k ≤ n− 1,

a ρn(h) = Rn(x0, x0 + h) jest reszt¡ Taylora. Pozostaje obliczy¢ warto±¢ cn. Ale

cn =
ρn(h)− rn+1(h)

hn
,

wi¦c

cn = lim
h→0

Rn(x0, x0 + h)

hn
=

f (n)(x0)

n!
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na mocy (6.38). �

Rozwini¦cie Taylora wokóª x0 = 0 nazywa si¦ tak»e rozwini¦ciem Maclau-
rina.

6.43. Przykªad. Rozwi«my funkcj¦ sinus we wzór Maclaurina. Jako »e

d2n

dx2n
sin x

∣∣
x=0

= 0,

d2n+1

dx2n+1
sin x

∣∣
x=0

= (−1)n cos x
∣∣
x=0

= (−1)n

dla n ∈ N ∪ {0}, rozwini¦cie przyjmuje posta¢

sin x =
n−1∑
k=0

(−1)k

(2k + 1)!
x2k+1 + R2n+1(x),

gdzie

R2n+1(x) = (−1)n cos θnx

(2n + 1)!
x2n+1,

dla pewnego θn ∈ (0, 1), a wi¦c

|R2n+1(x)| ≤ |x|2n+1

(2n + 1)!
.

To pokazuje, »e dla ka»dego x ∈ R

lim
n→∞

R2n+1(x) = 0,

czyli

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

Przypomnijmy, »e

sinh x =
∞∑

k=0

x2k+1

(2k + 1)!
.

Podobie«stwo tych rozwini¦¢ tªumaczy cz¦±ciowo podobie«stwo nazw obu tych na
pierwszy rzut oka bardzo niepodobnych funkcji.

6.44. Przykªad. Niech α ∈ R. Rozwi«my funkcj¦ f(x) = xα we wzór Taylora
wokóª punktu x0 = 1. Mamy

dkxα

dxk
= α(α− 1) . . . (α− k + 1)xα−k.

Wprowad¹my nowe oznaczenie(
α

k

)
=

α(α− 1) . . . (α− k + 1)

k!
,
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które jest oczywistym uogólnieniem znanego nam symbolu Newtona. Zatem

1

k!

dkxα

dxk

∣∣∣∣
x=1

=

(
α

k

)
i wzór Taylora przyjmuje posta¢

(1 + h)α =
n−1∑
k=0

(
α

k

)
hk + Rn(h), |h| < 1,

gdzie

Rn(h) =

(
α

n

)
(1 + θnh)α−nhn = n(1− ϑ)n−1

(
α

n

)
(1 + ϑnh)α−nhn

dla odpowiednich 0 < θn, ϑn < 1. Prawa strona wzoru Taylora, je±li pomin¡¢ reszt¦,
przedstawia sum¦ cz¦±ciow¡ szeregu pot¦gowego Taylora

∞∑
k=0

(
α

k

)
hk,

którego promie« zbie»no±ci jest równy 1, a wi¦c zbie»nego dla |h| < 1. Udowodnimy,
»e w istocie

(1 + h)α =
∞∑

k=0

(
α

k

)
hk, |h| < 1.

W tym celu nale»y wykaza¢, »e dla ka»dego ustalonego h

lim
n→∞

Rn(h) = 0.

Je±li 0 ≤ h < 1, to
(1 + ϑnh)α−n ≤ 1

dla n > α oraz

(1− ϑn)n−1(1− ϑnh)α−n =

(
1− ϑn

1− ϑnh

)n−1

(1− ϑnh)a−1 ≤ (1− h)−1.

Widzimy wi¦c, »e dla −1 < h < 1

|Rn(h)| ≤ n

∣∣∣∣(α

n

)∣∣∣∣(1− |h|)−1|h|n,

a poniewa»
∞∑

n=0

n

∣∣∣∣(α

n

)∣∣∣∣|h|n < ∞,

wi¦c Rn(h) → 0.

6.45. Przykªad. Zastosujmy wzór z poprzedniego przykªadu w przypadku α = 1
2
.

Mamy
√

1 + h =
∞∑

k=0

(
1
2

k

)
hk, |h| < 1,
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gdzie (
1
2

k

)
= (−1)k−1 1 · 3 · 5 · · · · · (2k − 3)

2 · 4 · 6 · · · · · 2k
.

Bior¡c α = −1
2
i h = −x2, otrzymujemy

1√
1− x2

=
∞∑

k=0

(
−1

2

k

)
(−1)kx2k,

gdzie

(−1)k

(
−1

2

k

)
=

1 · 3 · 5 . . . (2k − 1)

2 · 4 · 6 . . . 2k
.

Wobec tego

(arc sin x)′ =
∞∑

k=0

1 · 3 · 5 . . . (2k − 1)

2 · 4 · 6 . . . 2k
x2k,

a st¡d

arc sin x =
∞∑

k=0

1 · 3 · 5 . . . (2k − 1)

2 · 4 · 6 . . . 2k

x2k+1

2k + 1

dla |x| < 1. W szczególno±ci pami¦taj¡c, »e sin π
6

= 1
2
, mamy

π

6
=

∞∑
k=0

1 · 3 · 5 . . . (2k − 1)

2 · 4 · 6 . . . 2k
· 1

22k+1(2k + 1)
.

I jeszcze jeden przykªad.

6.46. Przykªad. Niech

f(x) =

{
e−1/x2

, x 6= 0,

0, x = 0.

Nie ma w¡tpliwo±ci, »e nasza funkcja jest niesko«czenie wiele razy ró»niczkowalna
poza zerem. Aby zbada¢ jej ró»niczkowalno±¢ w punkcie x = 0, sprawd¹my na-
jpierw przez indukcj¦, »e dla ka»dego n ∈ N ∪ {0} i ka»dego x 6= 0

(6.47) f (n)(x) =
pn(x)

x3n
e−1/x2

,

gdzie pn jest pewnym wielomianem. Rzeczywi±cie, dla n = 0, p0(x) = 1. Natomiast

f (n+1)(x) =

(
p′n(x)x3n − 3nx3n−1pn(x)

x6n
− pn

x3n
· 2

x3

)
e−1/x2

=
pn+1(x)

x3(n+1)
e−1/x2

,

gdzie
pn+1(x) = x3p′n(x) + (3nx2 + 2)pn(x).

Ze wzoru (6.47) i nierówno±ci

e−1/x2 ≤ N !x2N
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prawdziwej dla ka»dego N ∈ N wynika, »e

lim
x→0

f (n)(x) = 0

dla ka»dego n ∈ N, a st¡d przez indukcj¦, »e f ma wszystkie pochodne w zerze i

f (n)(0) = 0, n ∈ N.

Wobec tego rozwini¦cie Taylora funkcji f wokóª zera przyjmuje dla dowolnego n
posta¢

f(h) = Rn(h).

Wida¢ te», »e funkcja f nie rozwija si¦ w szereg Taylora, bo to oznaczaªoby, »e jest
funkcj¡ zerow¡, a tak oczywi±cie nie jest.

Mówimy, »e funkcja f okre±lona na przedziale I ⊂ R jest wypukªa, je±li dla
ka»dych x, y ∈ I i ka»dego 0 < λ < 1

(6.48) f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x).

Aby lepiej zrozumie¢ t¦ de�nicj¦, zauwa»my, »e sieczna wykresu funkcji f prze-
chodz¡ca przez punkty (x, f(x)) i (y, f(y)) jest wykresem funkcji liniowej

gx,y(t) =
f(y)− f(x)

y − x
(t− x) + f(x) =

t− x

y − x
f(y) +

(
1− t− x

y − x

)
f(x),

a ka»dy punkt t ∈ (x, y) mo»na zapisa¢ jako

t =
t− x

y − x
y +

(
1− t− x

y − x

)
x = λty + (1− λt)x.

Wstawiaj¡c t¦ wªa±nie warto±¢ λ = λt do (6.48), widzimy, »e wypukªo±¢ f jest
równowa»na warunkowi

f(t) < gx,y(t), t ∈ (x, y), x, y ∈ I.

Zatem funkcja f jest wypukªa, wtedy i tylko wtedy gdy dla ka»dych x, y ∈ I wykres
funkcji na odcinku [x, y] le»y nie wy»ej ni» sieczna wykresu w punktach o odci¦tych
x, y.

6.49. Lemat. Je»eli funkcja ci¡gªa f : I → R speªnia warunek

f(
x + y

2
) ≤ f(x) + f(y)

2
, x, y ∈ I,

to jest wypukªa.

Dowód. Niech a < b b¦d¡ punktami odcinka I. Przypu±¢my nie wprost, »e dla
pewnego a < t0 < b zachodzi f(t0) > g(t0), gdzie g = ga,b jest funkcj¡ liniow¡,
której wykres jest sieczn¡ wykresu f . Niech (x, y) b¦dzie maksymalnym przedzi-
aªem zawieraj¡cym t, takim »e f(t) > g(t) dla t ∈ (x, y). Taki przedziaª istnieje, bo
f − g jest funkcj¡ ci¡gª¡. Oczywi±cie (x, y) ⊂ (a, b) i f(x) = g(x) oraz f(y) = g(y).
Zatem g(t) = gx,y(t) i wobec tego na mocy naszego zaªo»enia f(t1) ≤ g(t1) dla
t1 = x+y

2
, co stoi w sprzeczno±ci z de�nicj¡ punktów x, y. �
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6.50. Twierdzenie. Funkcja f : I → R jest wypukªa, wtedy i tylko wtedy gdy dla
ka»dego c ∈ I iloraz ró»nicowy

φc(x) =
f(x)− f(c)

x− c
, x ∈ I \ c,

jest funkcj¡ rosn¡c¡.

Dowód. Przypu±¢my, »e f jest wypukªa i x < y < c. Wtedy dla pewnego t ∈ (0, 1)
mamy y = (1− t)x + tc, wi¦c f(y) ≤ (1− t)f(x) + tf(c), a st¡d

φc(y) =
f(y)− f(c)

y − c
≤ f(x)− f(c)

x− c
=≥ φc(x).

Je±li natomiast c < x < y, to x = tc + (1 − t)y dla pewnego t ∈ (0, 1), wi¦c
f(x) ≤ tf(c) + (1− t)f(y), sk¡d

φc(x) =
f(y)− f(c)

y − c
≤ f(y)− f(c)

y − c
= φcy).

Wreszcie, korzystaj¡c z poprzednich ustale«, dla x < c < y mamy

φc(x) = φx(c) ≤ φx(y) = φy(x) ≤ φy(c) = φc(y),

co ko«czy pierwsz¡ cz¦±¢ dowodu.
Zaªó»my teraz, »e ilorazy ró»nicowe funkcji f s¡ rosn¡ce. Je±li x 6= y i c =

tx + (1− t)y, gdzie i t ∈ (0, 1), to

f(c) = (c− x)φx(c) + f(x) ≤ (c− x)φx(y) + f(x)

=
c− x

y − x
f(y) +

(
1− c− x

y − x

)
f(x) = tf(x) + (1− t)f(x),

wi¦c funkcja jest wypukªa. �

6.51. Wniosek. Funkcja wypukªa w przedziale otwartym (a, b) jest ci¡gªa. Ponadto
jest lipschitzowska na ka»dym domkni¦tym przedziale [α, β] ⊂ (a, b).

Dowód. Niech α ≤ x < y ≤ β. Na mocy Twierdzenia 6.50

f(y)− f(x) ≤ f(b)− f(β)

b− β
(y − x) ≤ C1(y − x).

gdzie C1 = |f(b)−f(β)
b−β

|, oraz

f(y)− f(x) ≥ f(α)− f(a)

α− a
(y − x) ≥ −C2(y − x),

gdzie C2 = |f(α)−f(a)
α−a

|. Niech C = max{C1, C2}. Wtedy

|f(x)− f(y)| ≤ C|x− y|,
a wi¦c f jest lipschitzowska na odcinku [α, β].
Przedziaª I = (a, b) jest sum¡ zawartych w nim przedziaªów domkni¦tych, w

których funkcja jest ci¡gªa. Zatem f jest ci¡gªa w I. �
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6.52. Przykªad. Nie mo»na twierdzi¢, »e funkcja wypukªa jest lipschitzowska na
przedziale domkni¦tym. Przykªadem ci¡gªej funkcji wypukªej na [0, 1], która nie
jest lipschitzowska jest x 7→ −

√
x.

W przypadku funkcji ró»niczkowalnych i dwukrotnie ró»niczkowalnych wypukªo±¢
mo»na opisa¢ bardzo przejrzy±cie.

6.53. Twierdzenie. Ró»niczkowalna funkcja f : (a, b) → R jest wypukªa, wtedy i
tylko wtedy gdy pochodna f ′ : (a, b) → R jest funkcj¡ rosn¡c¡.

Dowód. Niech f b¦dzie wypukªa i niech a < x < y < b. Wtedy dla dowolnych
x < t < s < y

f(x)− f(t)

x− t
≤ f(y)− f(s)

y − s
,

wi¦c przechodz¡c do granicy z t → x i s → y, otrzymujemy

f ′(x) ≤ f ′(y).

Funkcja f ′ jest zatem rosn¡ca.
Przypu±¢my teraz, »e f ′ jest rosn¡ca. Dla a < x < t < y < b mamy

f(t)− f(x)

t− x
= f ′(c1) ≤ f ′(c2) =

f(y)− f(t)

y − t
,

gdzie c1 ∈ (x, t), a c2 ∈ (t, y), wi¦c c1 < c2. Skorzystali±my z dwukrotonie z
twierdzenia Lagrange'a i z monotoniczno±ci f ′ dla argumentów c1 i c2. Otrzymany
warunek jest ju» równowa»ny wypukªo±ci. �

6.54. Wniosek. Funkcja dwukrotnie ro»niczkowalna f : (a, b) → R jest wypukªa,
wtedy i tylko wtedy gdy f ′′ : (a, b) → R jest funkcj¡ nieujemn¡.

Dowód. Warunek f ′′ ≥ 0 jest równowa»ny temu, »e f ′ jest funkcj¡ rosn¡c¡, wi¦c
mo»na skorzysta¢ z udowodnionego przed chwil¡ twierdzenia. �

Mówimy, »e funkcja f okre±lona na przedziale I ⊂ R jest ±ci±le wypukªa, je±li
dla ka»dych x 6= y z przedziaªu I i ka»dego 0 < λ < 1

(6.55) f(λy + (1− λ)x) < λf(y) + (1− λ)f(x).

6.56. Twierdzenie. Ró»niczkowalna funkcja f : (a, b) → R jest ±ci±le wypukªa,
je±li jej pochodna f ′ : (a, b) → R jest funkcj¡ ±ci±le rosn¡c¡.

6.57. Wniosek. Funkcja dwukrotnie ro»niczkowalna f : (a, b) → R jest ±ci±le
wypukªa, je±li jej druga pochodna f ′′ : (a, b) → R jest funkcj¡ dodatni¡.

Dowody tych dwóch wniosków s¡ tak podobne do analogicznych wnuiosków dla
funkcji wypukªych, »e pozostawimy je Czytelnikowi do samodzielnego uzupeªnienia.
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Mówimy, »e funkcja f : I → R jest (±ci±le) wkl¦sªa, je»eli funkcja −f jest
(±ci±le) wypukªa.
Niech f : (a, b) → R. Je±li punkt c ∈ (a, b) ma t¦ wªasno±c, »e dla pewnego

dostatecznie maªego ε > 0 funkcja f jest ±ci±le wypukªa na przedziele (c − ε, c)
i ±ci±le wkl¦sªa na przedziale (c, c + ε) lub te» na odwrót, to punkt c nazywa si¦
punktem przegi¦cia funkcji f . Zwró¢my uwag¦, »e przy takiej de�nicji punkt
przegi¦cia nie musi by¢ punktem ci¡gªo±ci funkcji.

6.58. Uwa g a. Z de�nicji wynika natychmiast, »e je±li druga pochodna dwukrotnie
ró»niczkowalnej funkcji f zmienia znak w punkcie c, to jest on punktem przegi¦cia.

6.59. Fakt. Niech n ≥ 2. Niech b¦dzie dana funkcja f ró»niczkowalna n + 1 razy
w otoczeniu punktu c. Zaªo»my, »e

f ′(c) = f ′′(c) = · · · = fn−1(c) = 0

oraz
f (n)(c) 6= 0.

Je»eli n jest parzyste, to punkt c jest punktem ±cisªego ekstremum lokalnego, a je±li
nieparzyste { punktem przegi¦cia.

Dowód. Przypu±¢my najpierw, »e n jest parzyste i rozwi«my we wzór Taylora
pochodn¡ f ′ wokóª punktu c. Mamy

f ′(c + h) =
f (n)(c)

n!
hn−1 + rn(h) =

(
f (n)(c)

n!
+

rn(h)

hn−1

)
hn−1,

gdzie
|rn(h)| ≤ Cn|h|n.

Wida¢ wi¦c, »e wobec nieparzysto±ci n− 1 pochodna f ′ zmienia znak w punkcie c,
co dowodzi, »e c jest punktem ±cisªego ekstremum.
Je±li natomiast n jest nieparzyste, to rozwijamy drug¡ pochodn¡ we wzór Taylora

wokóª c i widzimy, »e

f ′′(c + h) =
f (n)(c)

n!
hn−2 + rn−1(h) =

(
f (n)(c)

n!
+

rn−1(h)

hn−1

)
hn−2,

gdzie
|rn−1(h)| ≤ Cn−1|h|n−1,

wi¦c teraz wobec nieparzysto±ci n− 2 druga pochodna zmienia znak w c. Zatem c
jest punktem przegi¦cia. �
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Zacznijmy2 od twierdzenia, które pogª¦bi nasz¡ znajomo±¢ funkcji ci¡gªych. Doty-
czy ono poj¦cia jednostajnej ci¡gªo±ci. Funkcj¦ f : I → R nazywamy jednostajnie
ci¡gª¡, je±li dla dowolnych ci¡gów {xn}, {yn} ⊂ I, takich »e xn − yn → 0, jest

f(xn)− f(yn) → 0, n →∞.

Zauwa»my najpierw, »e je±li jeden z naszych ci¡gów jest staªy, a wi¦c gdy np.
yn = x0, powy»szy warunek oznacza po prostu ci¡gªo±¢ w punkcie x0. Tak wi¦c,
funkcja jednostajnie ci¡gªa jest ci¡gªa. Z kolei funkcja

f(x) =
1

x
, x ∈ (0, 1),

jest przykªadem funkcji ci¡gªej, ale nie jednostajnie ci¡gªej. Rzeczywi±cie, kªad¡c
xn = 1

n
, yn = 1

n+1
, mamy

xn − yn =
1

n(n + 1)
, i f(xn)− f(yn) = −1,

a wi¦c f(xn) − f(yn) nie zmierza do zera, cho¢ xn − yn tak. Jednostajna ci¡gªo±¢
to zatem co± wi¦cej ni» ci¡gªo±¢.

7.1. Uwa g a. Ka»da funkcja lipschitzowska f : I → R jest jednostajnie ci¡gªa, co
wynika wprost z oszacowania

|f(xn)− f(yn)| ≤ C|xn − yn|, xn, yn ∈ I.

De�nicj¦ jednostajnej ci¡gªo±ci mo»emy te» sformuªowa¢ za pomoc¡ kwanty�ka-
torów w duchu Cauchy'ego. Mianowicie, funkcja f : I → R jest jednostajnie ci¡gªa,
wtedy i tylko wtedy gdy

∀ε > 0 ∃δ > 0 ∀x, y ∈ I
(
|x− y| < δ =⇒ |f(x)− f(y)| < ε

)
.

A oto zapowiedziane twierdzenie.

7.2. Twierdzenie. Funkcja ci¡gªa na odcinku domkni¦tym jest jednostajnie ci¡gªa.

Dowód . Przypu±¢my nie wprost, »e funkcja ci¡gªa f : [a, b] → R nie jest jednos-
tajnie ci¡gªa. Istnieje wtedy ε > 0 i istniej¡ ci¡gi o wyrazach xn, yn ∈ [a, b], takie
»e

xn − yn → 0, ale |f(xn)− f(yn)| ≥ ε.

Na mocy twierdzenia Bolzano-Weierstrassa z ci¡gu {yn} mo»emy wybra¢ podci¡g
{ynk

} zbie»ny do pewnego x0 ∈ [a, b]. Oczywi±cie wtedy tak»e xnk
→ x0, wi¦c

2Dzi¦kuj¦ Panu Tomaszowi Stachowiakowi za uwa»ne przeczytanie tego rozdziaªu i cenne
uwagi.
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wobec ci¡gªo±ci f

f(xnk
) → f(x0), f(ynk

) → f(x0),

a to przeczy naszemu zaªo»eniu |f(xnk
)− f(ynk

)| ≥ ε > 0. tu

Podziaªem odcinka [a, b] ⊂ R nazywamy ka»dy sko«czony zbiór P ⊂ [a, b]
zawieraj¡cy oba ko«ce odcinka. Niech

a = x0 < x1 < x2 < · · · < xn = b

b¦d¡ punktami podziaªu P . Odcinki

Ik = [xk−1, xk], 1 ≤ k ≤ n,

b¦dziemy nazywali odcinkami podziaªu P . Je±li f : [a, b] → R jest funkcj¡
ograniczon¡, a P podziaªem [a, b], to liczby

S(f, P ) =
n∑

k=1

sup
Ik

f · |Ik|, S(f, P ) =
n∑

k=1

inf
Ik

f · |Ik|,

gdzie |Ik| oznacza dªugo±¢ k-tego odcinka podziaªu P , nazywamy odpowiednio
górna i doln¡ sum¡ caªkow¡ funkcji f .

7.3. Lemat. Je±li P ⊂ Q s¡ podziaªami odcinka [a, b], a f jest funkcj¡ ograniczon¡
na [a, b], to

S(f, P ) ≤ S(f, Q) ≤ S(f, Q) ≤ S(f, P ).

Dowód . Nierówno±¢ ±rodkowa jest oczywista, a nierówno±ci skrajnych dowodzi
si¦ podobnie. Dowiedziemy, »e S(f, Q) ≤ S(f, P ). Przez ªatw¡ indukcj¦ dowód
sprowadza si¦ do przypadku, gdy Q zawiera tylko o jeden punkt wi¦cej ni» P .
Niech wi¦c P = {xj}n

j=0, Q = P ∪ {c} i xk−1 < c < xk dla pewnego 1 ≤ k ≤ n.
Wtedy

S(f, P ) =
n∑

j=1

sup
[xj−1,xj ]

f(x)(xj − xj−1)

=
∑
j 6=k

sup
[xj−1,xj ]

f(x)(xj − xj−1) + sup
[xk−1,xk]

f(x)(xk − xk−1)

≥
∑
j 6=k

sup
[xj−1,xj ]

f(x)(xj − xj−1) + sup
[xk−1,c]

f(x)(c− xk−1) + sup
[c,xk]

f(x)(xk − c)

= S(f, Q),

co byªo do okazania. tu

7.4. Wniosek. Je±li P i Q s¡ podziaªami odcinka [a, b], a f jest funkcj¡ ogranic-
zon¡ na [a, b], to

S(f, Q) ≤ S(f, P ).
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Dowód . Rzeczywi±cie,

S(f, Q) ≤ S(f, Q ∪ P ) ≤ S(f, Q ∪ P ) ≤ S(f, P )

na mocy lematu. tu

Niech P oznacza rodzin¦ wszystkich podziaªów odcinka [a, b]. Skoro ka»da caªkowa
suma dolna danej funkcji ograniczonej jest nie wi¦ksza od ka»dej sumy górnej, zbiór
wszystkich dolnych sum caªkowych jest ograniczony od góry, a zbiór wszystkich sum
górnych ograniczony od doªu.
Liczby ∫

f = inf
P∈P

S(f, P ),

∫
f = sup

P∈P
S(f, P )

nazywamy odpowiednio górn¡ i doln¡ caªk¡ Darboux funkcji f . Oczywi±cie∫
f ≤

∫
f.

Ograniczon¡ funkcj¦ f : [a, b] → R nazywamy caªkowaln¡ w sensie Riemanna,
je±li jej caªki Darboux s¡ równe. Ich wspóln¡ warto±¢ nazywamy wtedy caªk¡
Riemanna z funkcji f i piszemy∫

[a,b]

f =

∫ b

a

f =

∫ b

a

f(x)dx =

∫
f =

∫
f.

Rodzin¦ funkcji caªkowalnych na odcinku [a, b] oznacza¢ b¦dziemy przez R([a, b]).
Zauwa»my, »e

Ω(f, P ) = S(f, P )− S(f, P ) =
∑

k

sup
x,y∈Ik

(f(x)− f(y))|Ik|,

gdzie Ik s¡ odcinkami wyznaczonymi przez podziaª P .
Z de�nicji caªkowalno±ci funkcji wynika ªatwo

7.5. Fakt. Funkcja ograniczona f : [a, b] → R jest caªkowalna, wtedy i tylko wtedy
gdy dla ka»dego ε > 0 istnieje podziaª P odcinka [a, b], taki »e

Ω(f, P ) < ε.

7.6. Fakt. Je±li f ∈ R([a, b]), to f ∈ R([c, d]) dla ka»dego [c, d] ⊂ [a, b]. Z drugiej
strony, je±li f ∈ R([a, c]) i f ∈ R([c, d]), to f ∈ R([a, b].

Dowód . Niech P b¦dzie podziaªem odcinka [a, b]. Niech

P ′ = (P ∩ [c, d]) ∪ {c, d}.

Zbiór P ′ jest podziaªem [c, d] i ªatwo zauwa»y¢, »e

Ω[c,d](f, P ′) ≤ Ω[a,b](f, P ),

sk¡d natychmiast wynika pierwsza cz¦±¢ tezy.
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Je±li natomiast P1 i P2 s¡ odpowiednio podziaªami [a, c] i [c, b], to P = P1 ∪ P2

jest podziaªem [a, b] i

Ω[a,b](f, P ) ≤ Ω[a,c](f, P1) + Ω[c,d](f, P2).

St¡d ju» wynika druga cz¦±¢ tezy. tu
�rednic¡ podziaªu P = {xj}n

j=0 nazywamy liczb¦

δ(P ) = max
1≤j≤n

|xj − xj−1|.

7.7. Twierdzenie. Je±li f : [a, b] → R jest ci¡gªa, to jest caªkowalna.

Dowód . Niech ε > 0. Funkcja f jest jednostajnie ci¡gªa, wi¦c istnieje δ > 0, taka
»e

|f(x)− f(y)| < ε

b− a
, |x− y| < δ.

Niech P b¦dzie podziaªem odcinka [a, b] o ±rednicy mniejszej ni» δ. Niech {Ij}n−1
j=0

b¦d¡ odcinkami podziaªu. Wtedy

Ω(f, P ) =
n−1∑
j=0

sup
Ij

(f(x)− f(y))|Ij|

<
ε

b− a

n−1∑
j=0

|Ij| = ε,

co dowodzi naszej tezy. tu

7.8. Przykªad. Rozpatrzmy bardzo prosty lecz wa»ny przykªad. Niech f(x) = 1
na odcinku [a, b]. Wtedy dla ka»dego podziaªu P

S(f, P ) = S(f, P ) = b− a,

wi¦c f jest caªkowalna i
∫ b

a
f = b− a.

7.9. Lemat. Je±li f, g s¡ ograniczonymi funkcjami na [a, b], a λ ∈ R, to∫
f + g ≤

∫
f +

∫
g,

∫
f + g ≥

∫
f +

∫
g,∫

λf = λ

∫
f,

∫
λf = λ

∫
f,

∫
− f = −

∫
f.

St¡d natychmiast wynika

7.10. Lemat. Je±li f, g s¡ caªkowalnymi funkcjami na [a, b], a λ ≥ 0, to∫
f + λg =

∫
f + λ

∫
g.
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7.11. Lemat. Je±li f ∈ R([a, b]), to |f | ∈ R([a, b]).

Dowód . Rzeczywi±cie, dla ka»dego Podziaªu P

Ω(|f |, P ) ≤ Ω(f, P ),

co wynika z nierówno±ci trójk¡ta. Zatem caªkowalno±¢ f poci¡ga caªkowalno±¢ |f |.
tu

7.12. Fakt. Je±li f, g ∈ R([a, b]) i f ≤ g, to
∫

f ≤
∫

g. W szczególno±ci, je±li
f ≥ 0, to

∫
f ≥ 0.

7.13. Fakt. Je±li f ∈ R([a, b]), to |
∫ b

a
f | ≤

∫ b

a
|f |.

Dowód . Mamy f ≤ |f | i −f ≤ |f |, wi¦c na mocy poprzedniego Faktu
∫

f ≤
∫
|f |

oraz −
∫

f ≤
∫
|f |. St¡d |

∫
f | ≤

∫
|f |. tu

Dla ograniczonej funkcji f : I → R wprowad¹my oznaczenie

‖f‖ = sup
x∈[a,b]

|f(x)|.

7.14. Lemat. Dla dowolnych podziaªów P i Q odcinka [a, b] i ograniczonej funkcji
f na tym przedziale zachodzi nierówno±¢

S(f, P ) ≤ S(f, P ∪Q) + 2‖f‖(|Q| − 2)δ(P ),

gdzie |Q| oznacza liczb¦ elementów Q.

Dowód . Lematu dowodzi si¦ ªatwo przez indukcj¦ ze wzgl¦du na liczebno±¢ podzi-
aªu Q. tu

7.15. Twierdzenie. Niech f ∈ R([a, b]). Je±li {Pn} jest ci¡giem podziaªów odcinka
[a, b], takim »e limn→∞ δ(Pn) = 0, to

S(f, Pn) →
∫

[a,b]

f, S(f, Pn) →
∫

[a,b]

f.

Dowód . Niech ε > 0. Istnieje podziaª Q odcinka [a, b], taki »e

S(f, Q) <

∫
[a,b]

f + ε.

Niech N b¦dzie tak du»e, aby dla n ≥ N byªo

δ(Pn) <
ε

2‖f‖|Q|
.
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Na mocy Lematu 7.14

S(f, Pn) ≤ S(f, Pn ∪Q) + 2‖f‖|Q|δ(Pn)

<

∫
[a,b]

f + 2ε,

co dowodzi pierwszej równo±ci granicznej. Z niej wynika ju» druga. Rzeczywi±cie,

lim
n→∞

S(f, Pn) = lim
n→∞

−S(−f, Pn) = −
∫

[a,b]

(−f) =

∫
[a,b]

f,

co ko«czy dowód. tu
Niech b¦dzie dana funkcja ograniczona f : [a, b] → R i podziaª P = {xj}k

j=0 tego
odcinka. Niech

c = (c1, c2, . . . , ck), cj ∈ [xj−1, xj].

Wtedy sum¦

S(f, P, c) =
k∑

j=1

f(cj)(xj − xj−1)

nazywamy sum¡ riemannowsk¡ funkcji f wyznaczon¡ przez podziaª P i ci¡g
punktów po±rednich c.

7.16. Wniosek. Niech f ∈ R([a, b]).Je±li Pn jest ci¡giem podziaªów o ±rednicach
zbie»nych do zera, to sumy riemannowskie S(f, Pn, cn) d¡»¡ do caªki z funkcji f .

Dowód . �atwo zauwa»y¢, »e dla ka»dego n

S(f, Pn) ≤ S(f, Pn, cn) ≤ S(f, Pn),

wi¦c wystarczy zastosowa¢ poprzedni lemat i twierdzenie o trzech ci¡gach. tu

7.17. Przykªad. Scaªkujmy funkcj¦ cosinus na odcinku [0, a]. Funkcja ta jako
ci¡gªa jest caªkowalna, wi¦c mo»na to zrobi¢ za pomoc¡ sum riemannowskich. Niech

Pn =

{
ka

n

}n

k=0

.

Wybieraj¡c ck = (k−1)a
n

i kªad¡c cn = (ck)k, mamy

Sn = S(cos, Pn, cn) =
n∑

k=1

a

n
cos(k − 1) · a

n

=
a

n

n−1∑
k=0

cos k
a

n
=

a

n
·
sin a

2
cos (n−1)a

2n

sin a
2n

,

sk¡d, jak ªatwo wida¢,∫ a

0

cos x dx = lim
n→∞

Sn = 2 sin
a

2
cos

a

2
= sin a.



7. Caªkowanie 121

7.18. Przykªad. Obliczmy caªk¦
∫ a

0
xpdx dla p > 0. Funkcja jest ci¡gªa, wi¦c

caªkowalna. Jak wy»ej, posªu»ymy si¦ sumami Riemanna. Niech Pn i cn b¦d¡ jak
w poprzednim przykªadzie. Wtedy

Sn =
n∑

k=1

a

n

(
k

n
a

)p

=
ap+1

np+1

n∑
k=1

kp = ap+1 ·
∑n

k=1 kp

np+1
.

Aby znale¹¢ granic¦ ci¡gu
an

bn

=

∑n
k=1 kp

np+1

skorzystamy z twierdzenia Stolza. Ci¡g {bn} jest oczywi±cie ±ci±le monotonicznie
rozbie»ny do niesko«czono±ci, a ponadto

a′n
b′n

=
(n + 1)p

(n + 1)p+1 − np+1
= (1 +

1

n
)p · 1/n

(1 + 1
n
)p+1 − 1

.

Jako »e

lim
n→∞

(1 + 1
n
)p+1 − 1

1/n
=

d

dx
xp+1

∣∣
x=1

= p + 1,

widzimy »e

lim
n→∞

an

bn

=
1

p + 1
i ostatecznie ∫ a

0

xpdx =
ap+1

p + 1
.

Dla a > b oznaczmy ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

Nietrudno sprawdzi¢, »e dla dowolnych a, b, c ∈ R∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Nie tylko funkcje ci¡gªe s¡ caªkowalne.

7.19. Fakt. Ka»da funkcja monotoniczna na przedziale [a, b] jest caªkowalna.

Dowód . Niech f b¦dzie monotoniczna i niestaªa. Wtedy f(a) 6= f(b). Niech ε > 0
i niech P b¦dzie podziaªem odcinka [a, b] o ±rednicy

δ(P ) <
ε

|f(b)− f(a)|
.

Mamy wówczas

Ω(f, P ) ≤
n∑

k=1

|f(xk)− f(xk−1)|(xk − xk−1) ≤ δ(P )|f(b)− f(a)| = ε,

co poci¡ga nasz¡ tez¦. tu
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7.20. Przykªad. Niech f b¦dzie funkcj¡ na [0, 1] zde�niowan¡ tak:

f(x) =

{
an, x ∈ ( 1

n+1
, 1

n
],

a, x = 0,

gdzie an jest ci¡giem monotonicznie zbie»nym do a. Funkcja f jest nieci¡gªa w
niesko«czonej ilo±ci punktów, ale jest monotoniczna, wi¦c caªkowalna.

O innych nieci¡gªych funkcjach caªkowalnych mówi kolejne twierdzenie.

7.21. Twierdzenie. Je±li ograniczona funkcja f na przedziale domkni¦tym ma
sko«czenie wiele punktów nieci¡gªo±ci, to jest caªkowalna.

Dowód . Zaªo»my, »e f : [a, b] → R jest tak¡ funkcj¡. Niech

a ≤ c1 < c2 < · · · < cp ≤ b

b¦d¡ jej punktami nieci¡gªo±ci. Niech ε > 0. Wybierzmy rozª¡czne odcinki Ik, tak
aby ck ∈ Ik i odcinki dopeªniaj¡ce Jk. Zaªo»my ponadto, »e∑

k

|Ik| <
ε

2‖f‖
.

Zauwa»my, »e na ka»dym z odcinków Jk nasza funkcja jest caªkowalna, bo jest
ci¡gªa. Zatem dla ka»dego k istnieje rozbicie Jk = ∪Jkl na rozª¡czne odcinki
domkni¦te, takie »e ∑

Jkl

sup
x,y∈Jkl

(f(x)− f(y)) <
ε|Jkl|

2(b− a)
.

Rodzina odcinków {Ik}k∪{Ikl}kl de�niuje podziaª P odcinka [a, b]. Dla tego podzi-
aªu

Ω(f, P ) =
∑

k

(
sup

x,y∈Ik

(f(x)− f(y))
)

+
∑

l

(
sup

x,y∈Jkl

(f(x)− f(y))
)

< ε,

co wynika z de�nicji podziaªu P . Zatem f jest caªkowalna. tu

Przechodzimy do badania caªki jako funkcji górnej granicy caªkowania.

7.22. Lemat. Je±li f ∈ R([a, b]) i c ∈ [a, b], to funkcja

F (x) =

∫ x

c

f(t)dt, x ∈ [a, b],

jest lipschitzowska.

Dowód . Niech x, y b¦d¡ punktami odcinka [a, b]. Wtedy

F (x)− F (y) =

∫ x

c

f(t)dt−
∫ y

c

f(t)dt =

∫ y

x

f(t)dt,
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wi¦c

|F (x)− F (y)| ≤ |
∫ y

x

|f(t)|dt| ≤ M |x− y|,

gdzie M = ‖f‖. tu

7.23. Lemat. Je±li f ∈ R([a, b]) i c ∈ [a, b], to funkcja

F (x) =

∫ x

c

f(t)dt, x ∈ [a, b],

jest ró»niczkowalna w ka»dym punkcie x0 ci¡gªo±ci f . Ponadto

F ′(x0) = f(x0).

Dowód . Niech ε > 0. Poniewa» f jest ci¡gªa w x0, wi¦c istnieje δ > 0, taka »e
|f(x)− f(x0)| < ε, o ile |x− x0| < δ. Mamy zatem

F (x0 + h)− F (x0)

h
− f(x0) =

1

h

∫ x0+h

x0

(
f(t)− f(x0)

)
dt,

a wobec∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ ≤ 1

|h|

∣∣∣∣ ∫ x0+h

x0

|f(t)− f(x0)| dt

∣∣∣∣ ≤ ε
1

|h|

∣∣∣∣ ∫ x0+h

x0

dt

∣∣∣∣ = ε

dla |h| < δ, co ko«czy dowód. tu
Z poprzednich dwóch lematów wynika natychmiast podstawowe twierdzenie rachunku

ró»niczkowego i caªkowego.

7.24. Twierdzenie. Je±li f ∈ C([a, b]), to funkcja

F (x) =

∫ x

a

f(t)dt, x ∈ [a, b],

jest ró»niczkowalna w przedziale (a, b) oraz

F ′(x) =
d

dx

∫ x

a

f(t)dt = f(x), x ∈ (a, b).

Zatem F jest pierwotn¡ f w (a, b).

Mo»na udowodni¢ troch¦ wi¦cej.

7.25. Wniosek. Je±li f ∈ C([a, b]), to istnieje funkcja ró»niczkowalna G : R → R,
taka »e G′(x) = f(x) dla x ∈ [a, b].

Dowód . Funkcj¦ f mo»na rozszerzy¢ do funkcji g ci¡gªej na caªej prostej, kªad¡c

g(x) =


g(a), x < a,

f(x), x ∈ [a, b],

f(b), x > b.
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Niech

G(x) =

∫ x

a

g(t)dt, x ∈ R.

Na mocy twierdzenia funkcja G jest ró»niczkowalna na caªej prostej i G′(x) = g(x)
dla x ∈ R. W szczególno±ci

G′(x) = f(x), x ∈ [a, b].

7.26. Wniosek. Je±li f ∈ C([a, b]), F ∈ C([a, b]) oraz F ′(x) = f(x) dla x ∈ (a, b),
to ∫ b

a

f(t)dt = F (b)− F (a).

Dowód . Niech

F0(x) =

∫ x

a

f(t)dt, x ∈ [a, b].

Wtedy (F −F0)
′ = 0 na (a, b), wi¦c F −F0 = c na (a, b), a przez ci¡gªo±¢ tak»e na

ko«cach przedziaªu. St¡d∫ b

a

f(t)dt = F0(b)− F0(a) = (F0(b) + c)− (F0(a) + c) = F (b)− F (a),

tak jak chcieli±my. tu

7.27. Przykªad. a) Mamy (sin x)′ = cos x, wi¦c∫ b

a

cos x dx = sin b− sin a.

b) Mamy (xp+1)′ = (p + 1)xp, wi¦c∫ b

a

xpdx =
1

p + 1
(bp+1 − ap+1), a, b > 0, p 6= −1.

c) Niech

f(x) =
∞∑

n=0

anx
n, |x| < r,

gdzie r > 0 jest promieniem zbie»no±ci. Wiemy, »e

F (x) =
∞∑

n=0

an

n + 1
xn+1, |x| < r,

jest pierwotn¡ f . Wobec tego dla [a, b] ⊂ (−r, r)∫ b

a

f(t)dt = F (b)− F (a),

czyli ∫ b

a

∞∑
n=0

anx
n dx =

∞∑
n=0

an

n + 1
(bn+1 − an+1) =

∞∑
n=0

an

∫ b

a

xndx.
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7.28. Fakt. Je±li f, g ∈ R([a, b]), to fg ∈ R([a, b]).

Dowód . Poniewa»

f(x)g(x)− f(y)g(y) ≤ ‖g‖|f(x)− f(y)|+ ‖f‖|g(x)− g(y)|,
wi¦c dla ka»dego podziaªu P

Ω(fg, P )− S(fg, P ) ≤ ‖g‖Ω(f, P ) + ‖f‖Ω(g, P ),

co pozwala wnioskowa¢, »e iloczyn fg jest caªkowalny, pod warunkiem »e obie
funkcje f i g s¡ caªkowalne. tu

7.29. Twierdzenie (caªkowanie przez cz¦±ci). Je±li f, g : (a − ε, b + ε) → R s¡
ró»niczkowalne i f ′, g′ ∈ R([a, b]), to∫ b

a

f(x)g′(x)dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x)dx,

gdzie
φ(x)

∣∣b
a

= φ(b)− φ(a).

Dowód . Wiemy, »e

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x), x ∈ (a− ε, b + ε),

wi¦c caªkuj¡c obie strony i korzystaj¡c z podstawowego twierdzenia, otrzymujemy

f(b)g(b)− f(a)g(a) =

∫ b

a

f ′(x)g(x)dx +

∫ b

a

f(x)g′(x)dx,

sk¡d ju» natychmiast wynika wzór na caªkowanie przez cz¦±ci. tu

7.30. Przykªad. Mamy∫ x

a

log tdt =

∫ x

a

t′ log tdt = t log t
∣∣∣x
a
−
∫ x

a

dt = t(log t− 1)
∣∣∣x
a
.

Zauwa»my te», »e rzeczywi±cie funkcja x → x(log x − 1) jest pierwotn¡ funkcji
logarytmicznej,

7.31. Przykªad. Niech m, n ∈ Z i niech m 6= 0. Wtedy

In,m =

∫ 2π

0

sin nx sin mx dx = n cos x sin mx
∣∣∣2π

0
+

n

m

∫ 2π

0

cos nx cos mx dx

= (
n

m
)2

∫ 2π

0

sin mx sin nx dx = (
n

m
)2In,m,

wi¦c (1− ( n
m

)2)In,m = 0, sk¡d

(7.32) In,m =

{
0, |n| 6= |m|,
π, |n| = |m|.
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7.33. Lemat. Niech In =
∫ π/2

0
sinn x dx. Wtedy

(7.34) I2n =

(
n− 1/2

n

)
π

2
, I2n+1 =

(
n + 1/2

n

)−1

.

Dowód . Oba wzory wynikaj¡ ªatwo z zale»no±ci rekurencyjnej

(7.35) In+2 =
n + 1

n + 2
In,

która bierze si¦ z caªkowania przez cz¦±ci:

In+2 =

∫ π/2

0

sinn+2 x dx = −
∫ π/2

0

sinn+1 x(cos x)′ dx

= −(n + 1)

∫ π/2

0

sinn x cos2 x dx = −(n + 1)In + (n + 1)In+2.

Zauwa»my, »e ze wzgl¦du na to, »e sin 0 = cos π/2 = 0, przyrosty warto±ci funkcji
we wzorze na caªkowanie przez cz¦±ci znikaj¡. tu

Z zale»no±ci (7.35) wypªywa nast¦puj¡cy wniosek.

7.36. Wniosek. Niech In =
∫ π/2

0
sinn x dx. Wtedy

lim
n→∞

I2n

I2n+1

= 1.

Dowód . Rzeczywi±cie, jak ªatwo widzie¢

I2n+1 ≤ I2n ≤ I2n−1 =
2n + 1

2n
I2n+1,

sk¡d

1 ≤ I2n

I2n+1

≤ 2n

2n + 1
,

co pozwala wyprowadzi¢ nasz¡ tez¦ za pomoc¡ lematu o trzech ci¡gach. tu

7.37. Wniosek (wzór Wallisa). Jest

lim
n→∞

n

(
n− 1/2

n

)2

=
1

π
.

Dowód . Na mocy Lematu 7.33

1

π
=

1

2

(
n− 1/2

n

)(
n + 1/2

n

)
I2n+1

I2n

= (n + 1/2)

(
n− 1/2

n

)2
I2n+1

I2n

,

wi¦c nasza teza pªynie wprost z Wniosku 7.36. tu
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Pami¦tamy, »e

log

(
1 +

1

n

)
<

1

n
.

Postaramy si¦ teraz wzmocni¢ to oszacowanie, zmniejszaj¡c nieco jego praw¡ stro-
n¦. Dla 0 < x < 1 mamy

log(1 + x) =
∞∑

n=1

(−1)n+1xn

n
, log(1− x) = −

∞∑
n=1

xn

n
,

wi¦c

log
1 + x

1− x
= 2

∞∑
k=0

x2k+1

2k + 1

< 2x +
2

3
x3

∞∑
k=0

x2k = 2x +
2x3

2(1− x2)
.

Podstawiaj¡c x = 1
2n+1

, otrzymujemy

(7.38) log

(
1 +

1

n

)
<

1

n + 1
2

(
1 +

1

12n(n + 1)

)
.

I jeszcze jedna retrospekcja. Pami¦tamy, »e

n! >

(
n

e

)n

, n ∈ N.

Za chwil¦ uzyskamy znacznie subtelniejsze przybli»enia.

7.39. Twierdzenie (wzór Stirlinga). Dla ka»dego n ∈ N

√
2π <

n!en

nn+1/2
<
√

2πe
1

12n .

Dowód . Niech sn = n!en

nn+1/2 . Mamy

log
sn

sn+1

= (n + 1/2) log(1 + 1/n)− 1 > 0,

wi¦c ci¡g {sn} jest ±ci±le malej¡cy. Jako ci¡g liczb dodatnich ma granic¦ s ≥ 0. T¦
sam¡ granic¦ ma ci¡g tn = sne

− 1
12n , który z kolei jest ±ci±le rosn¡cy, bo na mocy

(7.38)

log
tn

tn+1

= (n + 1/2) log(1 + 1/n)− 1 +
1

12n

(
1

n + 1
− 1

n

)
< 0,

co pokazuje, »e dla ka»dego n ∈ N

sne
− 1

12n < s < sn.

W szczególno±ci s > 0. Pozostaje obliczy¢ granic¦ s. W tym celu zauwa»my, »e

s2
n

s2n

=
(n!)222n+1/2

(2n)!n1/2
=

√
2

n1/2
(

n−1/2
n

) ,
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wi¦c na mocy wzoru Wallisa

s = lim
n→∞

s2
n

s2n

=
√

2π,

co byªo do okazania. tu

I jeszcze jedno zastosowanie caªkowania przez cz¦±ci { reszta Taylora w postaci
caªkowej.

7.40. Twierdzenie. Niech f b¦dzie funkcj¡ ró»niczkowaln¡ n razy w sposób ci¡gªy
w otoczeniu punktu a ∈ R. Wówczas dla dostatecznie maªych h jej reszta Taylora
wyra»a si¦ wzorem

Rn(h) =
1

(n− 1)!

∫ h

0

(h− t)n−1f (n)(a + t)dt.

Dowód . Niech Sn(h) oznacza praw¡ stron¦ wzoru. Gdy n = 1

S1(h) =

∫ h

0

f ′(a + t)dt = f(a + h)− f(a) = R1(h).

Przypu±¢my przez indukcj¦, »e Sn(h) = Rn(h). Wtedy, caªkuj¡c przez cz¦±ci, widz-
imy, »e

Sn+1(h) =
1

n!
(h− t)f (n)(a + t)

∣∣∣∣h
0

+
1

(n− 1)!

∫ h

0

(h− t)n−1f (n)(a + t)dt

= − 1

n!
hnf (n)(a) + Rn(h) = Rn+1(h),

czego nale»aªo dowie±¢. tu

A teraz wzór na caªkowanie przez podstawienie.

7.41. Twierdzenie. Niech u : (a− ε, b + ε) → R b¦dzie ró»niczkowalna w sposób
ci¡gªy. Je±li f ∈ C(u([a, b])), to∫ u(b)

u(a)

f(y)dy =

∫ b

a

f(u(x))u′(x)dx.

Dowód . Niech u([a, b]) = [c, d] i niech F : (c−ε, d+ε) b¦dzie funkcj¡ ró»niczkowaln¡,
tak¡, »e f ′(y) = f(y) dla y ∈ [c, d]. Wtedy

d

dx
F (u(x)) = F ′(u(x))u′(x) = f(u(x))u′(x)

dla x ∈ [a, b], wi¦c∫ b

a

f(u(x)u′(x)dx = F (u(b))− F (u(a)) =

∫ u(b)

u(a)

f(y)dy,

co nale»aªo pokaza¢. tu
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7.42. Przykªad. Rozwa»my caªk¦

I =

∫ β

α

dx√
x2 + 2bx + c

,

przy zaªo»eniu, »e ocinek [α, β] le»y w obszarze, gdzie x2 + 2bx + c > 0. Stosuj¡c
podstawienie

u =
√

x2 + 2bx + c + x, x =
c− u2

2(u− b)
,

sk¡d
du

dx
=

b + u

u− x

widzimy, »e

I =

∫ u(β)

u(α)

du

b + u
=

∫ √β2+2bβ+c+β

√
α2+2bα+c+α

du

b + u
.

Podstawienie to, zwane podstawieniem Eulera, sprowadza caªk¦ z niewymierno±ci¡
drugiego stopnia do caªki z funkcji wymiernej.

Przechodzimy do twierdze« o warto±ci ±redniej dla caªek.

7.43. Twierdzenie. Je±li f ∈ C([a, b]), to istnieje c ∈ (a, b), takie »e∫ b

a

f(x)dx = f(c)(b− a).

Dowód . Niech F ∈ C([a, b]) b¦dzie pierwotn¡ f na przedziale (a, b). Wtedy na
mocy twierdzenia podstawowego i twierdzenia Lagrange'a∫ b

a

f(x)dx = F (b)− F (a) = F ′(c)(b− a) = f(c)(b− a)

dla pewnego c ∈ (a, b). tu

7.44. Twierdzenie. Niech f, g ∈ C([a, b]) i niech g ≥ 0. Wtedy istnieje c ∈ (a, b),
takie »e ∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Dowód . Funkcja f speªnia nierówno±ci m ≤ f ≤ M , gdzie m i M s¡ odpowiednio
jej najmniejsz¡ i najwi¦ksz¡ waro±ci¡ w [a, b]. St¡d mg(x) ≤ f(x)g(x) ≤ Mg(x)
dla x ∈ [a, b] i

mA ≤
∫ b

a

f(x)g(x)dx ≤ MA,
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gdzie A =
∫ b

a
g(x)dx. Funkcja A ·f jest ci¡gªa, a jej najmniejsz¡ warto±ci¡ jest Am,

najwi¦ksz¡ za± AM . Istnieje wi¦c c ∈ [a, b], takie »e

A · f(c) =

∫ b

a

f(x)g(x)dx,

co ju» jest niemal nasz¡ tez¡. Pozostaje jeszcze wykaza¢, »e c mo»na wybra¢ z
wn¦trza odcinka. Je±li A = 0 lub f jest staªa, jest to oczywiste. Je±li za± »aden z
tych warunków nie jest speªniony, to m < f(c) < M . Niech m = f(d1) i M = f(d2).
Na mocy wªasno±ci Darboux istnieje punkt

c1 ∈
(

min{d1, d2}, max{d1, d2})
)
⊂ (a, b),

taki »e f(c1) = f(c). tu

Zwró¢my uwag¦, »e pierwsze twierdzenie o warto±ci ±redniej jest szczególnym
przypadkiem drugiego, wtedy gdy g(x) = 1 dla x ∈ [a, b].
I jeszcze trzecie twierdzenie o warto±ci ±redniej.

7.45. Twierdzenie. Je±li f ∈ C([a, b], a g : (a − ε, b + e) → R jest rosn¡ca i
ró»niczkowalna w sposób ci¡gªy, to istnieje c ∈ (a, b), takie »e∫ b

a

f(x)g(x)dx = g(a)

∫ c

a

f(x)dx + g(b)

∫ b

c

f(x)dx.

Dowód . Niech F : (a− ε, b + ε) b¦dzie pierwotn¡ f na przedziale [a, b]. Wtedy∫ b

a

f(x)g(x)dx =

∫ b

a

F ′(x)g(x)dx = F (x)g(x)

∣∣∣∣b
a

−
∫ b

a

F (x)g′(x)dx,

a skoro g′ ≥ 0, mo»emy zastosowa¢ drugie twierdzenie o warto±ci ±redniej, by
znale¹¢ c ∈ (a, b), takie »e∫ b

a

f(x)g(x)dx = F (b)g(b)− F (a)g(a)− F (c)

∫ b

a

g′(x)dx

= F (b)g(b)− F (a)g(a)− F (c)

(
g(b)− g(a)

)
= g(a)

(
F (c)− F (a)

)
+ g(b)

(
F (b)− F (c)

)
i po skorzystaniu z równo±ci

F (c)− F (a) =

∫ c

a

f(x)dx, F (b)− F (c) =

∫ b

c

f(x)dx

otrzyma¢ tez¦. tu
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Przechodzimy do ostatniego tematu tego rozdziaªu, funkcji o wahaniu sko«c-
zonym. Niech b¦dzie dana funkcja f : [a, b] → R i podziaª P = {xk}n

k=0 tego
odcinka. Liczb¦

V b
a (f, P ) =

n∑
k=1

|f(xk)− f(xk−1)|

nazywamy wahaniem cz¦±ciowym funkcji f wyznaczonym przez podziaª P ,
natomiast kres górny waha« cz¦±ciowych

V b
a (f) = sup

P∈P
V b

a (f, P )

wahaniem caªkowitym f . Je±li V b
a (f) < ∞, to mówimy, »e funkcja f ma wa-

hanie sko«czone (lub ograniczone) na przedziale [a, b].

7.46. Lemat. Funkcja lipschitzowska f : [a, b] → R ma wahanie sko«czone i

V b
a (f) ≤ L(b− a),

gdzie L jest staª¡ z warunku Lipschitza. W szczególno±ci funkcja g ci¡gªa na [a, b]
i maj¡ca pochodn¡ ograniczon¡ w (a, b) jest funkcj¡ o wahaniu sko«czonym i

V b
a (g) ≤ ‖g′‖(b− a).

Dowód . Niech P = {xk} b¦dzie podziaªem [a, b]. Jako »e |f(x)−f(y)| ≤ L|x−y|
dla dowolnych x, y ∈ [a, b], mamy

V b
a (f, P ) =

n∑
k=1

|f(xk)− f(xk−1)| ≤ L
n∑

k=1

(xk − xk−1) = L(b− a).

Zatem V b
a (f) ≤ L(b− a). tu

Ale nie tylko funkcj¡ ci¡gªe mog¡ mie¢ wahanie sko«czone.

7.47. Lemat. Je±li f : [a, b] → R jest monotoniczna, to V b
a (f) = |f(b)− f(a)|.

Dowód . Niech P = {xk} b¦dzie podziaªem [a, b]. Wtedy

V b
a (f, P ) =

n∑
k=1

|f(xk)− f(xk−1)| = |f(b)− f(a)|,

bo wszystkie wyrazy sumy s¡ jednego znaku. Zatem wszystkie wahania cz¦±ciowe
s¡ sobie równe i V b

a (f) = |f(b)− f(a)|. tu

7.48. Przykªad. A oto przykªad funkcji ci¡gªej na odcinku [0, 1] o wahaniu niesko«c-
zonym. Niech

f(x) =

{
x cos π

x
, 0 < x ≤ 1,

0, x = 0.
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Niech xk = 1
k
. Wtedy

n∑
k=1

|f(xk)− f(xk+1)| =
n∑

k=1

∣∣∣(−1)k

k
− (−1)k+1

k + 1

∣∣∣
=

n∑
k=1

1

k
+

1

k + 1
≥ 2

n∑
k=1

1

k + 1
,

wi¦c V 1
0 (f) = ∞.

Nietrudno sprawdzi¢, korzystaj¡c z de�nicji wahania, »e je±li a ≤ c ≤ b i funkcja
f : [a, b] → R ma wahanie sko«czone, to

(7.49) V c
a (f) + V b

c (f) = V b
a (f).

7.50. Fakt. Je±li f : [a, b] → R ma wahanie sko«czone, to jest caªkowalna.

Dowód . Dla danego ε niech P b¦dzie podziaªem odcinka o ±rednicy δ < ε
v
, gdzie

v = V b
a (f). Wtedy

Ω(f, P ) =
n∑

k=1

sup
x,y∈[xk−1,xk]

(f(x)− f(y))(xk − xk−1)

≤ δ
n∑

k=1

V xk
xk−1

(f) < δV b
a (f) < ε.

dzi¦ki addytywno±ci wahania (7.49). tu

7.51. Twierdzenie. Niech f : (a − ε, b + ε) → R b¦dzie funkcj¡ ró»niczkowaln¡ i
niech f ′ ∈ R([a, b]). Wtedy

V b
a (f) =

∫ b

a

|f ′(x)|dx.

Dowód . Niech ε > 0. Niech δ > 0, b¦dzie tak maªa, by dla ka»dego podziaªu
P = {xj} odcinka [a, b] o ±rednicy δ(P ) < δ i ka»dego ci¡gu punktów po±rednich c
byªo ∣∣∣∣∣S(|f ′|, P, c)−

∫ b

a

|f ′(x)|dx

∣∣∣∣ < ε.

Wtedy tak»e na mocy twierdzenia Lagrange'a

V b
a (f, P ) =

n∑
j=1

|f(xj)− f(xj−1)|

=
n∑

j=1

|f ′(cj)|(xj − xj−1) = S(|f ′|, P, c)
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i w takim razie ∣∣∣∣∣V b
a (f, P )−

∫ b

a

|f ′(x)|dx

∣∣∣∣ < ε

dla δ(P ) < δ. Ale
V b

a (f) = sup
δ(P )<δ

V b
a (f, P ),

wi¦c f ma wahanie sko«czone i V b
a (f) =

∫ b

a
|f ′(x)|dx. tu

Mówimy, »e krzywa y = f(x), gdzie a ≤ x ≤ b, jest prostowalna, je±li

Lb
a(f) = sup

P∈P
Lb

a(f, P ) < ∞,

gdzie

Lb
a(f, P ) =

n∑
j=1

|(xj, f(xj))− (xj−1, f(xj−1))|

=
n∑

j=1

√
(xj − xj−1)2 + (f(xj)− f(xj−1))2

jest dªugo±ci¡ ªamanej wpisanej w krzyw¡ w punktach wyznaczonych przez podziaª
P . je±li krzywa jest prostowalna, to wielko±¢ Lb

a(f) nazywamy jej dªugo±ci¡.
Jak ªatwo zauwa»y¢,

V b
a (f) ≤ Lb

a(f) ≤ V b
a (f) + b− a,

a wi¦c krzywa y = f(x) jest prostowalna, wtedy i tylko wtedy gdy funkcja f ma
wahanie ograniczone.

7.52. Twierdzenie. Niech f : (a − ε, b + ε) → R b¦dzie funkcj¡ ró»niczkowaln¡ i
niech f ′ ∈ R([a, b]). Wtedy krzywa y = f(x) jest prostowalna i

Lb
a(f) =

∫ b

a

√
1 + f ′(x)2dx.

Dowód tego twierdzenia jest tak podobny do dowodu twierdzenia poprzedniego,
»e pozostawimy go do samodzielnego uzupeªnienia zainteresowanemu Czytelnikowi.

7.53. Fakt. Je»eli funkcja f : [a, b] → R o wahaniu ograniczonym jest ci¡gªa w
pewnym punkcie c, to tak»e funkcja v(x) = V x

a (f) jest ci¡gªa w tym punkcie.

Dowód . Dla zadanego e > 0 niech P = {xk} b¦dzie podziaªem odcinka [a, b],
takim »e V b

a (f) < V b
a (f, P )+ ε. Mo»emy zaªo»y¢, »e c = xK jest jednym z punktów

podziaªu. Niech c < x < xK+1 i niech Q b¦dzie podziaªem odcinka [c, x], takim »e
V x

c (f) < V x
c (f, Q) + ε. Niech R = P ∪Q. Wtedy

V b
a (f, P ) + V x

c (f, Q) = V b
a (f, R) + |f(x)− f(c)|

≤ V b
a (f) + |f(x)− f(c)|,
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wi¦c na mocy wyboru podziaªów P i Q

V b
a (f) + V x

c (f) ≤ V b
a (f) + |f(x)− f(c)|+ 2ε,

czyli
v(x)− v(c) ≤ |f(x)− f(c)|+ 2ε ≤ 3ε

je±li x jest dostatecznie bliskie c, dzi¦ki ci¡gªo±ci f w c. Podobnie rozumujemy dla
x < c. tu

7.54. Twierdzenie. Je±li f : [a, b] → R jest funkcj¡ (ci¡gª¡) o wahaniu ogranic-
zonym, to istniej¡ (ci¡gªe) funkcje rosn¡ce u i v na [a, b], takie »e f = v − u.

Dowód . Niech v(x) = V x
a (f). Wiemy, »e v jest funkcj¡ rosn¡c¡. Pozostaje

wykaza¢, »e u = v − f jest te» funkcj¡ rosn¡c¡. W tym celu zauwa»my, »e dla
x < y

f(y)− f(x) ≤ V y
x (f) = v(y)− v(x),

a wi¦c u(x) < u(y), co wynika z de�nicji wahania i (7.49). Je±li f jest ci¡gªa, to,
jak wynika z Faktu 7.53, tak»e v jest ci¡gªa. St¡d i u jest ci¡gªa. tu
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Ci¡g funkcyjny fn : D → R jest zbie»ny jednostajnie do f : D → R, je±li

∀ε>0 ∃N∈N ∀n≥N ‖fn − f‖ < ε,

co zapisujemy przy pomocy podwójnej strzaªki

fn(x) →
→ f(x), x ∈ D.

8.1. Uwa g a (warunek Cauchy'ego). Ci¡g funkcyjny fn : D → R jest zbie»ny
jednostajnie

∀ε>0 ∃N∈N ∀n,m≥N ‖fn − fm‖ < ε.

8.2. Uwa g a. Je±li fn(x) →
→ f(x) na D, to dla ka»dego x ∈ D jest fn(x) → f(x).

Zatem zbie»no±¢ jednostajna oznacza co± wi¦cej ni» zbie»no±¢ w ka»dym punkcie
x z osobna. Tak¡ zbie»no±¢ b¦dziemy nazywa¢ punktow¡.

8.3. Uwa g a. Ci¡g fn nie jest zbie»ny jednostajnie do 0 wtedy i tylko wtedy, gdy
istnieje ci¡g {xn} ⊂ D, taki »e ci¡g {fn(xn)} nie jest zbie»ny do 0.

8.4. Twierdzenie. Granica f jednostajnie zbie»nego ci¡gu funkcji ci¡gªych fn na
D jest ci¡gªa w ka»dym punkcie x0 ∈ D, w którym wszystkie funkcje fn s¡ ci¡gªe.

8.5. Wniosek. Je±li fn ∈ C([a, b]) i fn(x) →
→ f(x), to f ∈ C([a, b].

8.6. Wniosek. Je±li fn ∈ C([a, b]) i fn(x) →
→ f(x), to∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx.

8.7. Twierdzenie. Niech fn b¦d¡ funkcjami ró»niczkowalnymi w sposób ci¡gªy na
(a, b). Je±li ci¡g fn jest zbie»ny do funkcji f punktowo, a ci¡g f ′n zbie»ny jednos-
tajnie do funkcji g, to f jest funkcj¡ ró»niczkowaln¡ i f ′(x) = g(x) dla ka»dego
x ∈ D. Innymi sªowy,(

lim
n→∞

fn(x)

)′
= lim

n→∞
f ′n(x), x ∈ D.

Niech fn : D → R. Mówimy, »e szereg funkcyjny
∑∞

n=1 fn(x) jest jednostajnie
zbie»ny na D, je±li ci¡g funkcyjny jego sum cz¦±ciowych Sn(x) =

∑n
k=1 fk(x) jest

zbie»ny jednostajnie na D.

8.8. Wniosek. Niech fn b¦d¡ funkcjami ró»niczkowalnymi w sposób ci¡gªy na
(a, b). Je±li szereg

∑∞
n=1 fn jest zbie»ny do funkcji f punktowo, a szereg

∑∞
n=1 f ′n



136 Analiza B

zbie»ny jednostajnie do funkcji g, to f jest funkcj¡ ró»niczkowaln¡ i f ′(x) = g(x)
dla ka»dego x ∈ D. Innymi sªowy,( ∞∑

n=1

fn(x)

)′
=

∞∑
n=1

f ′n(x), x ∈ D.

8.9. Kryterium (Weierstrass). Niech fn : D → R. Je±li dla ka»dego x ∈ D
jest |fn(x)| ≤ an i

∑∞
n=1 an < ∞, to szereg funkcyjny

∑∞
n=1 fn(x) jest zbie»ny

jednostajnie.

Mówimy wtedy, »e szereg
∑∞

n=1 an jest zbie»n¡ liczbow¡ majorant¡ szeregu
funkcyjnego

∑∞
n=1.

8.10. Wniosek. Szereg pot¦gowy jest zbie»ny jednostajnie na ka»dym domkni¦tym
przedziale zawartym w jego otwartym przedziale zbie»no±ci.

8.11. Kryterium (Abel). Niech b¦d¡ dane dwa ci¡gi funkcyjne fn, gn : D →
R. Niech ci¡g {fn} b¦dzie monotoniczny. Je»eli fn jest jednostajnie zbie»ny do
zera, a szereg

∑∞
n=1 fn(x) ma sumy cz¦±ciowe jednostajnie ograniczone, to szereg∑∞

n=1 fn(x)gn(x) jest jednostajnie zbie»ny.

8.12. Kryterium (Dirichlet). Niech b¦d¡ dane dwa ci¡gi funkcyjne fn, gn : D →
R. Niech ci¡g {fn} b¦dzie monotoniczny. Je»eli fn jest jednostajnie ograniczony, a
szereg

∑∞
n=1 fn(x) jednostajnie zbie»ny, to szereg

∑∞
n=1 fn(x)gn(x) jest jednostajnie

zbie»ny.

8.13. Twierdzenie (Dini). Je±li monotoniczny ci¡g funkcji ci¡gªych na przedziale
domkni¦tym [a, b] jest zbie»ny punktowo do funkcji ci¡gªej, to jest zbie»ny jednos-
tajnie.

8.14. Twierdzenie (Weierstrass). Ka»da funkcja ci¡gªa na przedziale domkni¦tym
[a, b] jest jednostajn¡ granic¡ ci¡gu wielomianów.

Aby udowodni¢ to twierdzenie wprowadza si¦ rodzin¦ wielomianów:

φn(t) = cn(1− t2)n,

gdzie

cn =
1

2

(
n + 1/2

n

)
,

tak »e
∫ 1

−1
φn(t)dt = 1 dla ka»dego n ∈ N. Tak zde�niowane wielomiany maj¡

nast¦puj¡c¡ wa»n¡ wªasno±¢. Dla ka»dego 0 < δ < 1

lim
n→∞

∫
|t|<δ

φn(t)dt = 1.
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Wielomianem Tonelli'ego funkcji f ∈ C([0, 1] nazywamy wielomian

Tn(f)(x) =

∫ 1

0

φn(x− t)f(t)dt.

Twierdzenie Weierstrassa wynika z nast¦puj¡cego lematu.

8.15. Lemat. Niech f ∈ C([0, 1]. Wówczas dla ka»dego [a, b] ⊂ (0, 1)

Tn(f)(x) →
→ f(x), x ∈ [a, b].

Niech b¦dzie dana funkcja f : [a,∞) → R. Je±li f jest caªkowalna na ka»dym
przedziale [a, b] i istnieje granica

I = lim
b→∞

∫ b

a

f(x)dx,

to nazywamy j¡ caªk¡ niewªa±ciw¡ (pierwszego rodzaju) funkcji f na [a,∞) i
oznaczamy

I =

∫ ∞

a

f(x)dx.

Analogicznie de�niujemy caªk¦ niewªa±ciw¡∫ a

−∞
f(x)dx = lim

b→−∞

∫ a

b

f(x)dx.

Niech b¦dzie dana funkcja f : [a, b) → R. Je±li f jest caªkowalna na ka»dym
przedziale [a, t], gdzie a < t < b, i istnieje granica

I = lim
t→∞

∫ t

a

f(x)dx,

to nazywamy j¡ caªk¡ niewªa±ciw¡ (drugiego rodzaju) funkcji f na [a, b] i oz-
naczamy

I =

∫ b

a

f(x)dx.

Analogicznie de�niujemy caªk¦ niewªa±ciw¡∫ b

a

f(x)dx = lim
t→a

∫ b

t

f(x)dx

dla funkcji f caªkowalnej na ka»dym przedziale [t, b] dla a < t < b.

8.16. Kryterium (porównawcze). Niech b¦dzie dana dodatnia funkcja malej¡ca
f : [1,∞) → R. Wówczas∫ ∞

1

f(x)dx < ∞ ⇐⇒
∞∑

n=1

f(n) < ∞,

a dokªadniej
N∑

n=2

f(n) ≤
∫ N

1

f(x)dx ≤
N∑

n=1

f(n), N ∈ N.
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8.17. Wniosek. Niech α ∈ R. Szereg
∑∞

n=1
1

nα jest zbie»ny wtedy i tylko wtedy,
gdy zbie»na jest caªka

∫∞
1

dx
xα .

8.18. Uwa g a. Caªka
∫∞

1
dx
xα jest zbie»na wtedy i tylko wtedy, gdy α > 1. Caªka∫ 1

0
dx
xα jest zbie»na wtedy i tylko wtedy, gdy α < 1.

8.19. Lemat (Riemann-Legesgue). Dla ka»dej funkcji ci¡gªej na przedziale [a, b]

lim
n→∞

∫ b

a

f(x) sin nx dx = 0.

A oto caªki niewªa±ciwe, które warto zapami¦ta¢. Pierwsza z nich to caªka Pois-
sona ∫ ∞

0

e−x2

dx =

√
π

2
.

Druga to caªka Hilberta ∫ ∞

0

sin x

x
dx =

π

2
.

Jest jeszcze caªka Eulera

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0,

która de�niuje funkcj¦ zwan¡ gamm¡ Eulera. Ta caªka jest sum¡ dwóch caªek
niewªa±ciwych Γ(x) = Γ1(x) + Γ2(x), gdzie

Γ1(x) =

∫ 1

0

tx−1e−tdt, Γ2(x) =

∫ ∞

1

tx−1e−tdt.

Funkcja Γ jest ci¡gªa i ma nast¦puj¡c¡ wªasno±¢

Γ(x + 1) = xΓ(x), x > 0,

sk¡d ªatwo wynika, »e
Γ(n) = (n− 1)!, n ∈ N.

Ponadto

Γ

(
1

2

)
=

∫ ∞

0

e−x2

dx =

√
π

2
.

Wiemy, »e funkcja ró»niczkowalna w danym punkcie jest te» w tym punkcie
ci¡gªa. �atwo poda¢ przykªad funkcji ci¡gªej, ale nieró»niczkowalnej w izolowanych
punktach. Tak¡ funkcj¡ jest np.

u(x) = dist(x,Z).

Jest to funkcja ci¡gªa (kawaªkami liniowa) na caªej prostej, ale nieró»niczkowalna
w punktach xn = n

2
. Okazuje si¦, »e istniej¡ funkcje ci¡gªe, które nie maj¡ nigdzie

pochodnej.
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8.20. Fakt (van der Waerden). Niech

uk(x) = 4−ku(4kx)

dla k ∈ N ∪ {0}. Funkcja zadana szeregiem

f(x) =
∞∑

k=0

uk(x), x ∈ R,

jest ci¡gªa. Nie jest jednak ró»niczkowalna w »adnym punkcie.

Pierwszy przykªad funkcji ci¡gªej i nigdzie nie ró»niczkowalnej pochodzi od
Weierstrassa i jest do±¢ skomplikowany. Przykªad van der Waerdena korzysta z tego
samego pomysªu, ale jest znacznie prostszy technicznie. Na cze±¢ autora pomysªu
skonstruowan¡ wy»ej funkcj¦ nazywa si¦ czasem piª¡ Weierstrassa.


